Cộng, trừ nhiều phân thức đại sốCộng, trừ nhiều phân thức khác mẫu như thế nào? Phép cộng nhiều phân thức đại số có tính chất gì? 1. Lý thuyết - Quy tắc cộng, trừ nhiều phân thức: Muốn cộng, trừ nhiều phân thức khác mẫu thức, ta thực hiện các bước: - Quy đồng mẫu thức; - Cộng, trừ các phân thức có cùng mẫu thức vừa tìm được. - Tính chất phép cộng phân thức đại số: Phép cộng các phân thức cũng có các tính chất giao hoán, kết hợp: + Giao hoán: \(\frac{A}{B} + \frac{C}{D} = \frac{C}{D} + \frac{A}{B}; \) + Kết hợp: \(\left( {\frac{A}{B} + \frac{C}{D}} \right) + \frac{E}{F} = \frac{A}{B} + \left( {\frac{C}{D} + \frac{E}{F}} \right);\) + Cộng với 0: \(\frac{A}{B} + 0 = 0 + \frac{A}{B} = \frac{A}{B}.\) Chú ý: Nhờ tính chất kết hợp nên trong một dãy phép cộng nhiều phân thức, ta có thể không cần đặt dấu ngoặc. 2. Ví dụ minh họa \(\begin{array}{l}\frac{x}{{x + y}} + \frac{{2xy}}{{{x^2} - {y^2}}} - \frac{y}{{x + y}} = \frac{{x(x - y)}}{{(x + y)(x - y)}} + \frac{{2xy}}{{(x + y)(x - y)}} - \frac{{y(x - y)}}{{(x + y)(x - y)}}\\\frac{{{x^2} - xy + 2xy - xy + {y^2}}}{{(x + y)(x - y)}} = \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\end{array}\)
|