Mệnh để phủ định

Mệnh đề “Không phải P” được gọi là mệnh đề phủ định của mệnh đề (P). Kí hiệu là (overline P ).

1. Lý thuyết

+ Định nghĩa: Cho mệnh đề \(P\). Mệnh đề “Không phải P” được gọi là mệnh đề phủ định của mệnh đề \(P\). Kí hiệu là \(\overline P \).

 + Ví dụ: P: “16 chia hết cho 5” \( \Rightarrow \overline P \): “16 không chia hết cho 5”

+ Mối liên hệ về tính đúng sai của P và \(\overline P \)

Mệnh đề \(\overline P \) đúng khi P sai. Mệnh đề \(\overline P \) sai khi P đúng

Đôi khi ta xét tính đúng, sai của mệnh đề P ta xác định thông qua tính đúng, sai của \(\overline P \) và ngược lại.

+ Cách phủ định một mệnh đề:

  • Với các phát biểu lời văn, ta chỉ cần thêm hoặc bớt từ “không” (hoặc “không phải” vào trước vị ngữ của mệnh đề đó.
  • Với các mệnh đề chứa kí hiệu \(\forall ,\;\exists \) ta làm như sau: Đổi nhau hai kí hiệu \(\forall ,\;\exists \) và phủ định tính chất kèm theo. Cụ thể:

      \(\forall x \in X,P(x)\) thành \(\exists x \in X,\overline {P(x)} \)

      \(\exists x \in X,P(x)\) thành \(\forall x \in X,\overline {P(x)} \)

 

2. Ví dụ minh họa

A: “21 là bình phương của một số tự nhiên” \( \Rightarrow \overline A \): “21 không là bình phương của một số tự nhiên”

Mệnh đề A sai, \(\overline A \) đúng

B: “\(7x + 5y > 6\)” \( \Rightarrow \overline B \): “\(7x + 5y \le 6\)”

Mệnh đề B và \(\overline B \) là các mệnh đề chứa biến, chưa xác định được tính đúng sai.

C: “\(\forall n \in \mathbb{N},n \le {n^2}\)” \( \Rightarrow \overline C \): “\(\exists n \in \mathbb{N},n > {n^2}\)”

Mệnh đề C đúng, \(\overline C \) sai.

  • Mệnh đề kéo theo

    Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo. Kí hiệu là (P Rightarrow Q).

  • Mệnh đề đảo. Mệnh đề tương đương

    Mệnh đề (Q Rightarrow P)được gọi là mệnh đề đảo của mệnh đề (P Rightarrow Q). Nếu cả hai mệnh đề (P Rightarrow Q) và (Q Rightarrow P) đều đúng thì ta nói P và Q là hai mệnh đề tương đương. Kí hiệu là (P Leftrightarrow Q).

  • Mệnh đề chứa kí hiệu Với mọi, Tồn tại

    + Kí hiệu (forall ) đọc là “với mọi” + Kí hiệu (exists ) đọc là “tồn tại”

  • Mệnh đề chứa biến

    Một khẳng định nhưng không là mệnh đề, nhưng nếu cho một giá trị cụ thể thì câu đó cho ta một mệnh đề. Những câu như vậy được gọi là mệnh đề chứa biến.

  • Mệnh đề

    Mệnh đề logic (hay mệnh đề) là một khẳng định đúng hoặc sai. Mệnh đề toán học là những mệnh đề liên quan đến toán học.

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close