Hàm số bậc hai. Đồ thị hàm số bậc hai.

Hàm số bậc hai là hàm số cho bởi công thức \(y = a{x^2} + bx + c\), trong đó \(x\) là biến số, \(a,b,c\) là hằng số và \(a \ne 0\).

1. Lý thuyết

+ Định nghĩa:

Hàm số bậc hai là hàm số cho bởi công thức \(y = a{x^2} + bx + c\), trong đó \(x\) là biến số, \(a,b,c\) là hằng số và \(a \ne 0\).

Tập xác định của hàm số bậc hai là \(\mathbb{R}\)

+ Đồ thị hàm số bậc hai

Đồ thị hàm số \(y = a{x^2} + bx + c\;(a \ne 0)\) là một parabol, có đỉnh là điểm \(I\left( { - \frac{b}{{2a}}; - \frac{{{b^2} - 4ac}}{{4a}}} \right)\), có trục đối xứng là đường thẳng \(x =  - \frac{b}{{2a}}\).

Parabol này quay bề lõm lên trên nếu \(a > 0\), xuống dưới nếu \(a < 0\).

+ Các bước vẽ đồ thị hàm số \(y = a{x^2} + bx + c\)

Bước 1: Xác định a,b,c từ đó suy ra tọa độ đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{{{b^2} - 4ac}}{{4a}}} \right)\)

Bước 2: Xác định trục đối xứng  \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định giao điểm của parabol với trục tung, trục hoành (nếu có) và vài điểm đặc biệt (đối xứng nhau qua trục đối xứng) trên parabol

Bước 4: Vẽ parabol.

2. Ví dụ minh họa

Ví dụ 1. Vẽ đồ thị hàm số \(y = {x^2} + 2x + 2\)

Hàm số \(y = {x^2} + 2x + 2\) có \(a = 1,b = 2,c = 2\)

\( \Rightarrow  - \frac{b}{{2a}} =  - \frac{2}{{2.1}} =  - 1;y( - 1) = {( - 1)^2} + 2.( - 1) + 2 = 1\)

+ Tọa độ đỉnh \(I( - 1;1)\)

+ Trục đối xứng \(x =  - 1\)

+ Giao điểm với trục tung là A(0;2), không cắt trục hoành (vì \(y = {x^2} + 2x + 2 = {(x + 1)^2} + 1 > 0\;\forall x \in \mathbb{R}\))

+ Lấy điểm B(-2;2) đối xứng với A(0;2) qua trục đối xứng. Điểm C(1;5), D(-3;5) thuộc đồ thị.

 

Ví dụ 2. Vẽ đồ thị hàm số \(y =  - {x^2} + 2x\)

Hàm số \(y =  - {x^2} + 2x\) có \(a =  - 1,b = 2,c = 0\)

\( \Rightarrow  - \frac{b}{{2a}} =  - \frac{2}{{2.( - 1)}} = 1;y(1) =  - {1^2} + 2.1 = 1\)

+ Tọa độ đỉnh \(I(1;1)\)

+ Trục đối xứng \(x = 1\)

+ Giao điểm với trục tung là O(0;0), điểm giao với trục hoành là A(2;0)

+ Lấy điểm B(-1;-3) thuộc đồ thị. Điểm C(3;-3) đối xứng với B(-1;-3) qua trục đối xứng

 

  • Sự biến thiên của hàm số bậc hai.

    (a > 0) Hàm số nghịch biến trên (( - infty ; - frac{b}{{2a}})), đồng biến trên (( - frac{b}{{2a}}; + infty ))

  • Tính chẵn lẻ của hàm số

    Hàm số f được gọi là hàm số chẵn nếu (forall x in D) thì ( - x in D) và (f( - x) = f(x)) Hàm số f được gọi là hàm số lẻ nếu (forall x in D) thì ( - x in D) và (f( - x) = - f(x))

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close