Giải bài 5.29 trang 87 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho ({u_n} = sqrt n left( {sqrt {n + 2} - sqrt {n - 1} } right)).

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho \({u_n} = \sqrt n \left( {\sqrt {n + 2}  - \sqrt {n - 1} } \right)\). Khi đó \(\mathop {\lim }\limits_{n \to  + \infty } {u_n}\) bằng

A.\( + \infty \)                         

B. 0                     

C. \(\frac{1}{2}\)                    

D. 1.

Phương pháp giải - Xem chi tiết

Đối với những biểu thức chứa hiệu của căn, chúng ta dùng phương pháp nhân liên hợp. Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(\begin{array}{l}\mathop {\lim }\limits_{n \to  + \infty } {u_n} = \mathop {\lim }\limits_{n \to  + \infty } \sqrt n \left( {\sqrt {n + 2}  - \sqrt {n + 1} } \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt n \left( {\sqrt {n + 2}  - \sqrt {n + 1} } \right)\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right)}}\,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt n \left( {n + 2 - n - 1} \right)}}{{\sqrt {n + 2}  + \sqrt {n - 1} }} = \mathop {\lim }\limits_{n \to  + \infty } \frac{{\sqrt n }}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{n \to  + \infty } \frac{1}{{\sqrt {1 + \frac{2}{n}}  + \sqrt {1 + \frac{2}{n}} }} = \frac{1}{2}\end{array}\)

Đáp án C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close