Giải bài 5.33 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngBiết hàm số \(f(x) = \left\{ \begin{array}{l}{x^2} + a\,\,\,{\rm{khi}}\,\,x \le 1\\2x + b\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\) Đề bài Biết hàm số \(f(x) = \left\{ \begin{array}{l}{x^2} + a\,\,\,{\rm{khi}}\,\,x \le 1\\2x + b\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\) có giới hạn khi \(x \to 1\). Giá trị của \(a - b\) bằng A. \( - 1\) B. 0 C. 1 D. 3. Phương pháp giải - Xem chi tiết Dựa vào lý thuyết \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) để tính giá trị \(a - b\). Lời giải chi tiết Đáp án C. Giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1_{}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\). Nên \(\mathop {\lim }\limits_{x \to 1_{}^ + } \left( {{x^2} + a} \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {2x + b} \right) \Rightarrow 1 + a = 2.1 + b \Rightarrow a - b = 1\).
|