Giải bài 5.35 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho \(f(x) = \frac{{{x^2} - x}}{{|x|}}\). Khi đó, giới hạn \(\mathop {\lim }\limits_{x \to 0} f(x)\) là

Đề bài

Cho \(f(x) = \frac{{{x^2} - x}}{{|x|}}\). Khi đó, giới hạn \(\mathop {\lim }\limits_{x \to 0} f(x)\) là

A. 2                     

B. - 1                   

C. 1                     

D. Không tồn tại.

Phương pháp giải - Xem chi tiết

Dựa vào lý thuyết: Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) \ne \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\). Ta tính giới hạn trái và giới hạn phải để chứng minh giới hạn trên không tồn tại.

Lời giải chi tiết

Đáp án D.

Ta có:\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2} - x}}{{|x|}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2} - x}}{{ - x}} = \mathop {\lim }\limits_{x \to {0^ - }} ( - x + 1) = 1\).

Mà: \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} - x}}{{|x|}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} - x}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} (x - 1) =  - 1 \ne \mathop {\lim }\limits_{x \to {0^ - }} f(x)\).

Vậy không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 0} f(x)\).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close