Trắc nghiệm Bài tập cuối chương VII Toán 6 Kết nối tri thứcĐề bài
Câu 1 :
Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:
Câu 2 :
Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:
Câu 3 :
Số thập phân \(3,015\) được chuyển thành phân số là:
Câu 4 :
Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:
Câu 5 :
Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).
Câu 6 :
Một người gửi tiết kiệm \(15.000.000\) đồng với lãi suất \(0,6\% \) một tháng thì sau một tháng người đó thu được tất cả bao nhiêu tiền?
Câu 7 :
Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?
Câu 8 :
Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.
Câu 9 :
Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.
Câu 10 :
Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?
Câu 11 :
Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?
Câu 12 :
Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.
Câu 13 :
Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)
Lời giải và đáp án
Câu 1 :
Phân số \(\dfrac{2}{5}\) viết dưới dạng số thập phân là:
Đáp án : C Phương pháp giải :
Chuyển phân số đó về phân số thập phân rồi viết dưới dạng số thập phân. Lời giải chi tiết :
\(\dfrac{2}{5} = \dfrac{4}{{10}} = 0,4.\)
Câu 2 :
Hỗn số \(1\dfrac{2}{5}\) được chuyển thành số thập phân là:
Đáp án : B Phương pháp giải :
Chuyển hỗn số đó về phân số thập phân, sau đó viết dưới dạng số thập phân. Lời giải chi tiết :
\(1\dfrac{2}{5} = \dfrac{{1.5 + 2}}{5} = \dfrac{7}{5} = \dfrac{{14}}{{10}} = 1,4.\)
Câu 3 :
Số thập phân \(3,015\) được chuyển thành phân số là:
Đáp án : C Phương pháp giải :
Áp dụng qui tắc chuyển từ số thập phân về phân số. Lời giải chi tiết :
\(3,015 = \dfrac{{3015}}{{1000}}\)
Câu 4 :
Số tự nhiên \(x\) thỏa mãn: \(35,67 < x < 36,05\) là:
Đáp án : B Phương pháp giải :
Áp dụng qui tắc so sánh số thập phân để tìm được $x$ Lời giải chi tiết :
Ta có: \(35,67 < x < 36,05\) và \(x\) là số tự nhiên nên \(x = 36\).
Câu 5 :
Tìm \(x\), biết: \(2,4.x = \dfrac{{ - 6}}{5}.0,4\).
Đáp án : D Phương pháp giải :
Chuyển phân số về số thập phân, áp dụng qui tắc nhân, chia số thập phân để tìm \(x\). Lời giải chi tiết :
\(\begin{array}{l}2,4.x = \dfrac{{ - 6}}{5}.0,4\\2,4.x = - 1,2.0,4\\2,4.x = - 0,48\\x = - 0,48:2,4\\x = - 0,2.\end{array}\)
Câu 6 :
Một người gửi tiết kiệm \(15.000.000\) đồng với lãi suất \(0,6\% \) một tháng thì sau một tháng người đó thu được tất cả bao nhiêu tiền?
Đáp án : A Phương pháp giải :
Áp dụng công thức: tiền lãi = tiền gốc :\(100 \times \) lãi suất Tiền 1 tháng thu được = tiền gốc + tiền lãi. Lời giải chi tiết :
Tiền lãi thu được sau 1 tháng là: \(15.000.000:100\, \times 0,6 = 90.000\) đồng. Tổng số tiền thu được sau 1 tháng là: \(15.000.000 + 90.000 = 15.090.000\) đồng.
Câu 7 :
Trên đĩa có 64 quả táo. Hoa ăn hết 25% số táo. Sau đó Hùng ăn $\dfrac{3}{8}$ số táo còn lại. Hỏi trên đĩa còn bao nhiêu quả táo?
Đáp án : A Phương pháp giải :
Sử dụng cách tính giá trị phân số của một số cho trước Muốn tìm \(\dfrac{m}{n}\) của số \(b\) cho trước, ta tính \(b.\dfrac{m}{n}\) \(\left( {m,n \in \mathbb{N},n \ne 0} \right)\) Lời giải chi tiết :
Hoa ăn số táo là \(25\% .64 = 16\) quả. Số táo còn lại là \(64 - 16 = 48\) quả Hùng ăn số táo là \(\dfrac{3}{8}.48 = 18\) quả. Số táo còn lại sau khi Hùng ăn là \(48 - 18 = 30\) quả.
Câu 8 :
Lớp 6A có 48 học sinh. Số học sinh giỏi bằng 18,75% số học sinh cả lớp. Số học sinh trung bình bằng 300% số học sinh giỏi. Còn lại là học sinh khá. Tính tỉ số phần trăm số học sinh giỏi so với số học sinh khá.
Đáp án : C Phương pháp giải :
+ Tính số học sinh giỏi, học sinh trung bình và học sinh khá + Tính tỉ số phần trăm: Muốn tìm tỉ số phần trăm của hai số \(a\) và \(b\) , ta nhân \(a\) với \(100\) rồi chia cho \(b\) và viết kí hiệu % vào kết quả: \(\dfrac{{a.100}}{b}\% \) Lời giải chi tiết :
Số học sinh giỏi của lớp là \(18,75\% .48 = 9\) học sinh Số học sinh trung bình là \(9.300\% = 27\) học sinh Số học sinh khá là \(48 - 9 - 27 = 12\) học sinh Tỉ số phần trăm số học sinh khá và số học sinh giỏi là: \(\dfrac{9}{{12}}.100\% = 75\% .\)
Câu 9 :
Một nhà máy có ba phân xưởng, số công nhân của phân xưởng 1 bằng \(36\% \) tổng số công nhân của nhà máy. Số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3. Biết số công nhân của phân xưởng 1 là 18 người. Tính số công nhân của phân xưởng 3.
Đáp án : B Phương pháp giải :
Sử dụng cách giá trị phân số của một số cho trước và cách tìm một số biết giá trị phân số của nó để tính toán theo các bước: + Tính số công nhân của cả nhà máy + Tính số công nhân của cả hai phân xưởng 2 và 3 + Tính số công nhân của phân xưởng 2 + Tính số công nhân của phân xưởng 3 Lời giải chi tiết :
Số công nhân của cả nhà máy là \(18:36\% = 50\) công nhân Số công nhân của phân xưởng 2 và phân xưởng 3 là \(50 - 18 = 32\) công nhân Vì số công nhân của phân xưởng 2 bằng \(\dfrac{3}{5}\) số công nhân của phân xưởng 3 nên số công nhân của phân xưởng 2 bằng \(\dfrac{3}{{3 + 5}} = \dfrac{3}{8}\) số công nhân của cả hai phân xưởng. Số công nhân của phân xưởng 2 là \(32.\dfrac{3}{8} = 12\) công nhân Số công nhân của phân xưởng ba là \(32 - 12 = 20\) công nhân
Câu 10 :
Người ta mở vòi cho nước chảy vào đầy bể cần \(3\) giờ. Hỏi nếu mở vòi nước đó trong \(45\) phút thì được bao nhiêu phần của bể?
Đáp án : B Phương pháp giải :
Tìm số phần bể vòi nước chảy được trong 1 giờ, rồi lấy kết quả đó nhân với thời gian mở vòi nước. Lời giải chi tiết :
Đổi: \(45\)phút = \(\dfrac{3}{4}\) giờ Mỗi giờ vòi nước chảy được số phần bể là: \(1:3 = \dfrac{1}{3}\) (bể) Nếu mở vòi trong 45 phút thì được số phần bể là: \(\dfrac{3}{4}.\dfrac{1}{3} = \dfrac{1}{4}\)(bể)
Câu 11 :
Lúc 7 giờ 5 phút, một người đi xe máy đi từ A và đến B lúc 8 giờ 45 phút. Biết quãng đường AB dài 65km. Tính vận tốc của người đi xe máy đó?
Đáp án : A Phương pháp giải :
Áp dụng công thức: vận tốc = quãng đường : thời gian. Lời giải chi tiết :
Thời gian người đó đi hết quãng đường AB là: 8 giờ 45 phút – 7 giờ 5 phút = 1 giờ 40 phút Đổi 1 giờ 40 phút = \(\dfrac{5}{3}\) giờ. Vận tốc của người đi xe máy đó là: \(65:\dfrac{5}{3} = 39\left( {km/h} \right)\)
Câu 12 :
Cho \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\) và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\) . Chọn đáp án đúng.
Đáp án : D Phương pháp giải :
Chuyển hỗn số về dạng phân số rồi rút gọn từng biểu thức A; B để so sánh. Lời giải chi tiết :
Ta có \(A = \dfrac{{\left( {3\dfrac{2}{{15}} + \dfrac{1}{5}} \right):2\dfrac{1}{2}}}{{\left( {5\dfrac{3}{7} - 2\dfrac{1}{4}} \right):4\dfrac{{43}}{{56}}}}\)\( = \dfrac{{\left( {\dfrac{{47}}{{15}} + \dfrac{3}{{15}}} \right):\dfrac{5}{2}}}{{\left( {\dfrac{{38}}{7} - \dfrac{9}{4}} \right):\dfrac{{267}}{{56}}}} = \dfrac{{\dfrac{{50}}{{15}}.\dfrac{2}{5}}}{{\left( {\dfrac{{152}}{{28}} - \dfrac{{63}}{{28}}} \right).\dfrac{{56}}{{267}}}}\)\( = \dfrac{{\dfrac{4}{3}}}{{\dfrac{{89}}{{28}}.\dfrac{{56}}{{267}}}} = \dfrac{{\dfrac{4}{3}}}{{\dfrac{2}{3}}} = 2\) Và \(B = \dfrac{{1,2:\left( {1\dfrac{1}{5}.1\dfrac{1}{4}} \right)}}{{0,32 + \dfrac{2}{{25}}}}\)\( = \dfrac{{\dfrac{6}{5}:\left( {\dfrac{6}{5}.\dfrac{5}{4}} \right)}}{{\dfrac{8}{{25}} + \dfrac{2}{{25}}}} = \dfrac{{\dfrac{6}{5}:\dfrac{3}{2}}}{{\dfrac{{10}}{{25}}}} = \dfrac{{\dfrac{4}{5}}}{{\dfrac{2}{5}}} = 2\) Vậy \(A = B.\)
Câu 13 :
Tìm x biết \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\)
Đáp án : D Phương pháp giải :
Rút gọn biểu thức trong ngoặc Sử dụng qui tắc chuyển vế đổi dấu để tìm x Lời giải chi tiết :
Ta có \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313}}{{151515}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313}}{{636363}} + \dfrac{{131313}}{{999999}}} \right) = - 5\) \(\dfrac{1}{4}.x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{131313:10101}}{{151515:10101}} + \dfrac{{131313}}{{353535}} + \dfrac{{131313:10101}}{{636363:10101}} + \dfrac{{131313:10101}}{{999999:10101}}} \right) = - 5\) \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{{15}} + \dfrac{{13}}{{35}} + \dfrac{{13}}{{63}} + \dfrac{{13}}{{99}}} \right) = - 5\) \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {13.\left( {\dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + \dfrac{1}{{7.9}} + \dfrac{1}{{9.11}}} \right)} \right] = - 5\) \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{11}}} \right)} \right] = - 5\) \(25\% .x - 70\dfrac{{10}}{{11}}:\left[ {\dfrac{{13}}{2}.\left( {\dfrac{1}{3} - \dfrac{1}{{11}}} \right)} \right] = - 5\) \(25\% .x - 70\dfrac{{10}}{{11}}:\left( {\dfrac{{13}}{2}.\dfrac{8}{{33}}} \right) = - 5\) \(\begin{array}{l}25\% .x - \dfrac{{780}}{{11}}:\dfrac{{52}}{{33}} = - 5\\25\% .x - \dfrac{{780}}{{11}}.\dfrac{{33}}{{52}} = - 5\\25\% .x - 45 = - 5\\25\% .x = - 5 + 45\\25\% .x = 40\\x = 40:\dfrac{{25}}{{100}}\\x = 160\end{array}\)
|