Giải bài 7.24 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a, biết \(\left( {SAB} \right) \bot \left( {ABCD} \right)\), \(\left( {SAD} \right) \bot \left( {ABCD} \right)\) và \(SA = a\). Tính côsin của số đo góc nhị diện \(\left[ {S,BD,C} \right]\) và góc nhị diện \(\left[ {B,SC,D} \right]\). 

Phương pháp giải - Xem chi tiết

Để tính góc giữa hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) ta có thể thực hiện cách sau:

Tìm hai đường thẳng \(a,b\) lần lượt vuông góc với hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

Khi đó góc giữa hai đường thẳng \(a,b\) chính là góc giữa hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

\(\left\{ \begin{array}{l}a \bot \left( \alpha  \right)\\b \bot \left( \beta  \right)\end{array} \right. \Rightarrow \widehat {\left( {\left( \alpha  \right),\left( \beta  \right)} \right)} = \widehat {\left( {a,b} \right)}\).

Áp dụng tính chất: Hình vuông có hai đường chéo vuông góc

Dựa vào tỉ số lượng giác trong tam giác vuông để tìm góc

Áp dụng định lí côsin trong tam giác

Lời giải chi tiết

Ta có \(SO \bot BD,CO \bot BD\) nên góc nhị diện \(\left[ {S,BD,C} \right]\) bằng \(\widehat {SOC}\).

Vì tam giác \(SAO\) vuông tại \(A\) nên \(SO = \sqrt {S{A^2} + A{O^2}}  = \frac{{a\sqrt 6 }}{2}\) và \({\rm{cos}}\widehat {SOC} =  - {\rm{cos}}\widehat {SOA} =  - \frac{{OA}}{{SO}} =  - \frac{{\sqrt 3 }}{3}\).

 

Kẻ \(BM \bot SC\) tại \(M\) thì \(DM \bot SC\) nên \(\left[ {B,SC,D} \right] = \widehat {BMD}\).

Ta có \(BC \bot \left( {SAB} \right)\) nên tam giác \(SBC\) vuông tại \(B\), tính được \(SB = a\sqrt 2 \), \(SC = a\sqrt 3 \) và \(DM = BM = \frac{{SB \cdot BC}}{{SC}} = \frac{{a\sqrt 6 }}{3}\).

 Áp dụng định lí côsin trong tam giác \(BDM\), ta có: \({\rm{cos}}\widehat {BMD} = \frac{{B{M^2} + D{M^2} - B{D^2}}}{{2 \cdot BM \cdot DM}} =  - \frac{3}{4}\).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close