Giải bài 6.56 trang 22 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngVẽ đồ thị của hai hàm số \(y = {e^x}\) và \(y = {\rm{ln}}x\) trên cùng một hệ trục toạ độ. Đề bài a) Vẽ đồ thị của hai hàm số \(y = {e^x}\) và \(y = {\rm{ln}}x\) trên cùng một hệ trục toạ độ. b) Chứng minh rằng hai đồ thị trên đối xứng nhau qua đường thẳng \(y = x\) tức điểm \(M\) nằm trên một đồ thị thì \(M'\) đối xứng với \(M\) qua đường thẳng \(y = x\) sẽ nằm trên đồ thị còn lại. Phương pháp giải - Xem chi tiết a) Để vẽ đồ thị ta làm như sau: Lập bảng giá trị Xác định các điểm trên mặt phẳng tọa độ rồi nối các điểm đó lại b) Xét điểm \(A\left( {{x_0},{e^{{x_0}}}} \right)\) nằm trên đồ thị hàm số \(y = {e^x}\). Viết phương trình đường thằng d đi qua \(A\) vuông góc với đường thẳng \(y = x\): Toạ độ giao điểm của đường thẳng \({\rm{d}}\) và đường thẳng \(y = x\) là điểm \(B\) Gọi \(A'\) là điểm đối xứng của \(A\) qua đường thằng \(y = x\). Ta tìm được tọa độ \(A'\). Khi đó chứng minh\(A'\) thuộc đồ thị hàm số \(y = {\rm{ln}}x\). Tương tự nếu điểm \(B\left( {{x_0}{\rm{;ln}}{x_0}} \right)\) nằm trền đồ thị hàm số \(y = {\rm{ln}}x\) thì ta cũng có thể tìm toạ độ của điềm \(B'\) đối xứng với \(B\) qua đường thẳng \(y = x\) và chứng minh \(B'\) thuộc đồ thị hàm số \(y = {\theta ^x}\). Vậy hai đồ thị đã cho đối xứng với nhau qua đường thẳng \(y = x\). Lời giải chi tiết a) Đồ thị của hai hàm số \(y = {e^x}\) và \(y = {\rm{ln}}x\) trên cùng một hệ trục toạ độ như hình sau:
b) Xét điểm \(A\left( {{x_0},{e^{{x_0}}}} \right)\) nằm trên đồ thị hàm số \(y = {e^x}\). Viết phương trình đường thằng đi qua \(A\) vuông góc với đường thẳng \(y = x\):
Toạ độ giao điểm của đường thẳng \({\rm{d}}\) và đường thẳng \(y = x\) là \(B\left( {\frac{{{x_0} + {e^{{x_0}}}}}{2};\frac{{{x_0} + {e^{{x_0}}}}}{2}} \right)\) Gọi \(A'\) là điểm đối xứng của \(A\) qua đường thằng \(y = x\). Ta tìm được \(A'\left( {{e^{{x_0}}};{x_0}} \right)\). Khi đó \(A'\) thuộc đồ thị hàm số \(y = {\rm{ln}}x\). Tương tự nếu điếm \(B\left( {{x_0}{\rm{;ln}}{x_0}} \right)\) nằm trền đồ thị hàm số \(y = {\rm{ln}}x\) thì ta cũng có thể tìm toạ độ của điềm \(B'\) đối xứng với \(B\) qua đường thẳng \(y = x\) và chứng minh \(B'\) thuộc đồ thị hàm số \(y = {e^x}\). Vậy hai đồ thị đã cho đối xứng với nhau qua đường thẳng \(y = x\). Chú ý: Tổng quát, có thề chứng minh rằng đồ thị của hai hàm số \(y = {a^x}\) và \(y = {\rm{lo}}{{\rm{g}}_a}x(0 < a \ne 1)\) đối xứng với nhau qua đường phân giác của góc phẩn tư thứ nhất (tức là đường thẳng \(y = x\) ).
|