Giải bài 5.41 trang 89 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngCho dãy số \(({u_n})\) thỏa mãn \(|{u_n}|\,\, \le 1\). \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{u_n}}}{{n + 1}}\). Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Cho dãy số \(({u_n})\) thỏa mãn \(|{u_n}|\,\, \le 1\). \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{u_n}}}{{n + 1}}\). Phương pháp giải - Xem chi tiết Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) và \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = + \infty \) (hoặc \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = - \infty \)) thì \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{v_n}}} = 0\) Lời giải chi tiết Đặt \({v_n} = \frac{{{u_n}}}{{n + 1}}\), ta có \(|{v_n}|\, = \frac{1}{{n + 1}}\). Vậy \(\mathop {\lim }\limits_{x \to + \infty } {v_n} = 0\).
|