Giải bài 5.3 trang 78 sách bài tập toán 11 - Kết nối tri thức với cuộc sống. Cho \({u_n} = \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\) Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Cho \({u_n} = \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\) với a, b là các số thực thỏa mãn \(\left| a \right| < 1,\left| b \right| < 1\). Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\) Phương pháp giải - Xem chi tiết Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn. Lời giải chi tiết Ta có: \({u_n} = \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}} = \frac{{\frac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\frac{{1 - {b^{n + 1}}}}{{1 - b}}}} = \frac{{1 - b}}{{1 - a}}.\frac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}}\) Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \frac{{1 - b}}{{1 - a}}\)
|