Giải bài 1.28 trang 24 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngTìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau: Đề bài Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau: a) \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\) b) \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\) Phương pháp giải - Xem chi tiết a) Sử dụng cách giải phương trình \(\sin x = m\) (1) + Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm. + Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\). Khi đó, phương trình (1) tương đương với: \(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành: \(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2) + Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm. + Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha = m\). Khi đó, phương trình (1) tương đương với: \(\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành: \(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos = {\alpha ^0} + k{360^0}\\\cos = - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\) - Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\) Lời giải chi tiết a) Giá trị tương ứng của hai hàm số \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\) bằng nhau khi \(\cos \left( {2x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = x - \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{3} = - \left( {x - \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - \pi }}{{12}} + k2\pi \\x = \frac{{7\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\) b) Giá trị tương ứng của hai hàm số \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\) bằng nhau khi \(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x - \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = \pi - \left( {x - \frac{\pi }{6} + } \right)k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k\pi \\x = \frac{{17\pi }}{{48}} + k\frac{\pi }{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
|