Giải bài 1.26 trang 24 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải các phương trình sau:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Giải các phương trình sau:

a) \(\sin \left( {2x + {{15}^0}} \right) + \cos \left( {2x - {{15}^0}} \right) = 0\)

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0\)

c) \(\tan x + \cot x = 0\)

d) \(\sin x + \tan x = 0\)

Phương pháp giải - Xem chi tiết

a) Sử dụng cách giải phương trình \(\sin x = m\) (1)

+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha  \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha  = m\).

Khi đó, phương trình (1) tương đương với:

\(\sin x = m \Leftrightarrow \sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  - \alpha  + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:

\(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha  + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi  - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2)

+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.

+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha  \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha  = m\).

Khi đó, phương trình (1) tương đương với:

\(\cos x = m \Leftrightarrow \cos x = \cos \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x =  - \alpha  + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:

\(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos  = {\alpha ^0} + k{360^0}\\\cos  =  - \alpha  + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

- Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x =  - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

c) Sử dụng cách giải phương trình \(\tan \,x = m\left( 3 \right)\)

Phương trình (3) luôn có nghiệm với mọi giá trị của tham số m.

Luôn tồn tại duy nhất số \(\alpha  \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha  = m\)

Khi đó, phương trình (3) tương đương với:

\(\tan x = m \Leftrightarrow \tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \left( {k \in \mathbb{Z}} \right)\)

- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:

\(\tan x = \tan {\alpha ^0} \Leftrightarrow x = {\alpha ^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\)

- Nếu u, v là các biểu thức của x thì: \(\tan u = \tan v \Leftrightarrow u = v + k\pi \left( {k \in \mathbb{Z}} \right)\)

d) Sử dụng cách giải phương trình \(\cot \,x = m\left( 4 \right)\)

Phương trình (3) luôn có nghiệm với mọi giá trị của tham số m.

Luôn tồn tại duy nhất số \(\alpha  \in \left( {0;\pi } \right)\) thoả mãn \(\tan \alpha  = m\)

Khi đó, phương trình (4) tương đương với:

\(\cot x = m \Leftrightarrow \cot x = \cot \alpha  \Leftrightarrow x = \alpha  + k\pi \left( {k \in \mathbb{Z}} \right)\)

- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:

\(\cot x = \cot {\alpha ^0} \Leftrightarrow x = {\alpha ^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\)

- Nếu u, v là các biểu thức của x thì: \(\cot u = \cot v \Leftrightarrow u = v + k\pi \left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) \(\sin \left( {2x + {{15}^0}} \right) + \cos \left( {2x - {{15}^0}} \right) = 0 \Leftrightarrow \sin \left( {2x + {{15}^0}} \right) + \sin \left( {{{90}^0} - 2x + {{15}^0}} \right) = 0\)

\( \Leftrightarrow 2\sin {60^0}.cos\left( {2x - {{45}^0}} \right) = 0 \Leftrightarrow cos\left( {2x - {{45}^0}} \right) = cos{90^0}\)

\( \Leftrightarrow 2x - {45^0} = {90^0} + k{180^0} \Leftrightarrow x = \frac{{{{135}^0}}}{2} + k{90^0}\left( {k \in \mathbb{Z}} \right)\)

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0 \Leftrightarrow 2\cos \left( {\frac{{5x}}{2} + \frac{\pi }{{60}}} \right)\cos \left( {\frac{x}{2} - \frac{{11\pi }}{{60}}} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos \left( {\frac{{5x}}{2} + \frac{\pi }{{60}}} \right) = 0\\\cos \left( {x - \frac{{11\pi }}{{60}}} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{{5x}}{2} + \frac{\pi }{{60}} = \frac{\pi }{2} + k\pi \\\frac{x}{2} - \frac{{11\pi }}{{60}} = \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{29\pi }}{{150}} + k\frac{{2\pi }}{5}\\x = \frac{{41\pi }}{{30}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

c) Điều kiện: \(x \ne k\pi \)

\(\tan x + \cot x = 0 \Leftrightarrow \tan x + \frac{1}{{\tan \,x}} = 0 \Leftrightarrow {\tan ^2} + 1 = 0\)

Vì \({\tan ^2} + 1 > 0\) với mọi \(x \ne k\pi \). Do đó, phương trình đã cho vô nghiệm.

d) Điều kiện: \(x \ne \frac{\pi }{2} + k\pi \)

\(\sin x + \tan x = 0 \Leftrightarrow \sin x + \frac{{\sin x}}{{\cos x}} = 0 \Leftrightarrow \frac{{\sin x\cos x + \sin x}}{{\cos x}} = 0 \Leftrightarrow \sin x\left( {\cos x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos x + 1 = 0\\\sin x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos x =  - 1\\x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \pi  + k2\pi \\x = k\pi \end{array} \right. \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\left( {tm} \right)\)

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close