Giải bài 7.40 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Người ta cắt bỏ bốn hình vuông cùng kích thước ở bốn góc của một tấm tôn hình vuông có cạnh 1m

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Người ta cắt bỏ bốn hình vuông cùng kích thước ở bốn góc của một tấm tôn hình vuông có cạnh 1m để gò lại thành một chiếc thùng có dạng hình hộp chữ nhật không nắp. Hỏi cạnh của các hình vuông cần bỏ đi có độ dài bằng bao nhiêu để thùng hình hộp nhận được có thể tích lớn nhất?

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính thể tích khối hộp chữ nhật: V=a.b.c.

Trong đó: a,b,c là độ dài 3 cạnh hình hộp chữ nhật có chung 1 đỉnh

Bước 1: Gọi x(m) là chiều dài cạnh hình vuông nhỏ tại mỗi góc của tấm tôn được cắt bỏ đi (với 0<x<12 ).

Tính thể tích hình hộp chữ nhật nhận được

Bước 2: Tìm giá trị lớn nhất của thể tích hình hộp chữ nhật nhận được

Từ đó tìm x

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi x(m) là chiều dài cạnh hình vuông nhỏ tại mỗi góc của tấm tôn được cắt bỏ đi (với 0<x<12 ).

Thể tích hình hộp chữ nhật nhận được là

V=(12x)2x=14(12x)(12x)4x14(12x+12x+4x3)3=227

Dấu "=" xảy ra khi 12x=4xx=16.

Vậy để thể tích chiếc thùng là lớn nhất thì các cạnh của hình vuông được cắt bỏ đi là 16m.

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close