Giải bài 5 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1Cho hai hàm số f(x) và g(x) có lim và \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7. Tìm \mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}} Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Cho hai hàm số f(x) và g(x) có \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3 và \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7. Tìm \mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}} Phương pháp giải - Xem chi tiết + Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M: \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M, \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right).g\left( x \right)} \right] = L.M + Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \mathop {\lim }\limits_{x \to + \infty } c = c (với c là hằng số) Lời giải chi tiết Ta có: g\left( x \right) = \frac{1}{2}\left\{ {\left[ {f\left( x \right) + 2g\left( x \right)} \right] - f\left( x \right)} \right\} Do đó, \mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{1}{2}\left\{ {\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] - \mathop {\lim }\limits_{x \to + \infty } f\left( x \right)} \right\} = \frac{1}{2}\left( {7 - 3} \right) = 2 Suy ra: \mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}} = \frac{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}}{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) - \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}} = \frac{{2.3 + 2}}{{2.3 - 2}} = 2
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|