Giải bài 10 trang 85 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Tính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 2{x^2} - 1} \right)\); b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^3} + 2{x^2}}}{{3{x^2} + 1}}\); c) \(\mathop {\lim }\limits_{x \to - \infty } \sqrt {{x^2} - 2x + 3} \).

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^3} + 2{x^2} - 1} \right)\);

b) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} + 2{x^2}}}{{3{x^2} + 1}}\);

c) \(\mathop {\lim }\limits_{x \to  - \infty } \sqrt {{x^2} - 2x + 3} \).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc tính giới hạn vô cực để tính:

a) Nếu \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = L > 0,\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) =  - \infty \) thì \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right)g\left( x \right)} \right] =  - \infty \)

b) Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = L > 0,\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right) =  + \infty \) thì \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right)g\left( x \right)} \right] =  + \infty \)

c) Nếu \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = L > 0,\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) =  + \infty \) thì \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right)g\left( x \right)} \right] =  + \infty \)

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^3} + 2{x^2} - 1} \right) \) \( = \mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^3}\left( {1 + \frac{2}{x} - \frac{1}{{{x^3}}}} \right)} \right]\)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } {x^3} \) \( =  - \infty ;\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \frac{2}{x} - \frac{1}{{{x^3}}}} \right) \) \( = \mathop {\lim }\limits_{x \to  - \infty } 1 + \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{x} - \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{{x^3}}} \) \( = 1 > 0\)

Do đó, \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^3} + 2{x^2} - 1} \right) \) \( = \mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^3}\left( {1 + \frac{2}{x} - \frac{1}{{{x^3}}}} \right)} \right] \) \( =  - \infty \)

b) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} + 2{x^2}}}{{3{x^2} + 1}} \) \( = \mathop {\lim }\limits_{x \to  + \infty } \left[ {x.\frac{{1 + \frac{2}{x}}}{{3 + \frac{1}{{{x^2}}}}}} \right]\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } x \) \( =  + \infty ,\mathop {\lim }\limits_{x \to  + \infty } \frac{{1 + \frac{2}{x}}}{{3 + \frac{1}{{{x^2}}}}} \) \( = \frac{{1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}}{{3 + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{{x^2}}}}} \) \( = \frac{1}{3} > 0\)

Do đó, \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} + 2{x^2}}}{{3{x^2} + 1}} \) \( = \mathop {\lim }\limits_{x \to  + \infty } \left[ {x.\frac{{1 + \frac{2}{x}}}{{3 + \frac{1}{{{x^2}}}}}} \right] \) \( =  + \infty \)

c) \(\mathop {\lim }\limits_{x \to  - \infty } \sqrt {{x^2} - 2x + 3} \mathop {\lim }\limits_{x \to  - \infty } \left[ {\left| x \right|\sqrt {1 - \frac{2}{x} + \frac{3}{{{x^2}}}} } \right] \) \( = \mathop {\lim }\limits_{x \to  - \infty } \left[ { - x\sqrt {1 - \frac{2}{x} + \frac{3}{{{x^2}}}} } \right]\)

Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \left( { - x} \right) \) \( =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } \sqrt {1 - \frac{2}{x} + \frac{3}{{{x^2}}}}  \) \( = \sqrt {1 - \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{x} + \mathop {\lim }\limits_{x \to  - \infty } \frac{3}{{{x^2}}}}  \) \( = 1 > 0\)

Do đó, \(\mathop {\lim }\limits_{x \to  - \infty } \sqrt {{x^2} - 2x + 3}  \) \( = \mathop {\lim }\limits_{x \to  - \infty } \left[ { - x\sqrt {1 - \frac{2}{x} + \frac{3}{{{x^2}}}} } \right] \) \( =  + \infty \)

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close