Giải bài 9.28 trang 64 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngCho hàm số \(f\left( x \right) = \sqrt {1 + 5g\left( x \right)} \) và \(g\left( 0 \right) = 3,g'\left( 0 \right) = - 8\). Đạo hàm \(f'\left( 0 \right)\) bằng Đề bài Cho hàm số \(f\left( x \right) = \sqrt {1 + 5g\left( x \right)} \) và \(g\left( 0 \right) = 3,g'\left( 0 \right) = - 8\). Đạo hàm \(f'\left( 0 \right)\) bằng A. \(10\). B. \( - 8\). C. \( - 5\). D. \(5\). Phương pháp giải - Xem chi tiết Áp dụng công thức đạo hàm của hàm hợp \({\left( {\sqrt u } \right)^\prime } = \frac{{u'}}{{2\sqrt u }}\) Lời giải chi tiết \(f'(x) = {\left( {\sqrt {1 + 5g(x)} } \right)^\prime } = \frac{{{{\left( {1 + 5g(x)} \right)}^\prime }}}{{2\sqrt {1 + 5g(x)} }} = \frac{{5g'(x)}}{{2\sqrt {1 + 5g(x)} }}\) \(f'(0) = \frac{{5g'(0)}}{{2\sqrt {1 + 5g(0)} }} = \frac{{5.( - 8)}}{{2\sqrt {1 + 5.3} }} = - 5\)
|