Giải bài 4.44 trang 71 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và (P) là mặt phẳng cố định không song song với MN

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và (P) là mặt phẳng cố định không song song với MN. Gọi A’, B’, C’, D’, M’, N’ lần lượt là hình chiếu của A, B, C, D, M, N qua phép chiếu lên mặt phẳng (P) theo phương MN.

a) Chứng minh rằng hai điểm M’ và N’ trùng nhau.

b) Chứng minh rằng bốn điểm A’, B’, C’, D’ là bốn đỉnh của một hình bình hành.

Phương pháp giải - Xem chi tiết

- Cho mặt phẳng \(\left( \alpha  \right)\) và đường thẳng \(\Delta \) cắt \(\left( \alpha  \right)\). Với mỗi điểm M trong không gian ta xác định điểm M’ như sau:

+ Nếu M thuộc \(\Delta \) thì M’ là giao điểm của \(\left( \alpha  \right)\) và \(\Delta \).

+ Nếu M không thuộc \(\Delta \) thì M’ là giao điểm của \(\left( \alpha  \right)\) và đường thẳng qua M song song với \(\Delta \).

Điểm M’ được gọi là hình chiếu của M trên mặt phẳng \(\left( \alpha  \right)\) theo phương chiếu \(\Delta \).

- Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

Lời giải chi tiết

a) Vì đường thẳng MN là phương chiếu nên M’ của M trùng với hình chiếu N’ của N.

b) Vì M là trung điểm của AB nên theo tính chất của phép chiếu song song suy ra M’ là trung điểm của A’B’.

Vì N là trung điểm của CD nên theo tính chất của phép chiếu song song suy ra N’ là trung điểm của C’D’.

Vì M’ trùng N’ nên tứ giác tạo bởi bốn điểm A’, B’, C’, D’ có các đường chéo đi qua trung điểm của mỗi đường, suy ra tứ giác đó là hình bình hành.

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close