Giải bài 3 trang 112 sách bài tập toán 11 - Chân trời sáng tạo tập 1Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh rằng ba đường thẳng CD, IG, HF cùng đi qua một điểm. Đề bài Cho tứ diện ABCD. Gọi E, F, G lần lượt là các điểm thuộc ba cạnh AB, AC, BD sao cho EF cắt BC tại I, AD cắt EG tại H. Chứng minh rằng ba đường thẳng CD, IG, HF cùng đi qua một điểm. Phương pháp giải - Xem chi tiết Sử dụng kiến thức về chứng minh ba đường thẳng đồng quy để chứng minh ba đường thẳng đồng quy: + Gọi O là giao điểm của HF và IG + Chứng minh O thuộc CD. Lời giải chi tiết Gọi O là giao điểm của HF và IG. Ta có: \(O \in HF\), mà \(HF \subset \left( {ACD} \right) \Rightarrow O \in \left( {ACD} \right)\) Vì \(O \in IG\), mà \(IG \subset \left( {BCD} \right) \Rightarrow O \in \left( {BCD} \right)\) Do đó, \(O \in \left( {BCD} \right) \cap \left( {ACD} \right)\) Mặt khác, CD là giao tuyến của hai mặt phẳng (ACD) và (BCD) Do đó, \(O \in CD\). Vậy ba đường thẳng CD, IG, HF cùng đi qua một điểm.
|