Giải bài 1 trang 112 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Cho hình chóp S. ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD. a) Tìm giao điểm EF với (SAC). b) Tìm giao điểm BC với (AEF).

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình chóp S. ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD.

a) Tìm giao điểm EF với (SAC).

b) Tìm giao điểm BC với (AEF).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về giao điểm giữa đường thẳng và mặt phẳng để tìm: Cách tìm giao điểm của đường thẳng d và mặt phẳng (α):

- Trường hợp 1: Trong mặt phẳng (α) có sẵn đường thẳng d’ cắt d tại I: Ta có ngay d(α)=I

- Trường hợp 2: Trong mặt phẳng (α) không có sẵn đường thẳng d’ cắt d. Khi đó ta thực hiện như sau:

+ Chọn mặt phẳng phụ (β) chứa d và (β) cắt (α) theo giao tuyến d’.

+ Gọi I=dd. Khi đó, d(α)=I.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Trong mặt phẳng (ABCD), gọi O là giao điểm của AC và BD. Do đó, SO là giao tuyến của mặt phẳng (SAC) và (SBD).

Trong mặt phẳng (SBD), gọi I là giao điểm của EF và SO.

Vì I thuộc EF, ISO(SAC) nên I là giao điểm của EF và (SAC).

b) Trong mặt phẳng (SBD), gọi K là giao điểm của EF và BD. Khi đó, AK là giao tuyến của (ABCD) và (AEF).

Trong mặt phẳng (ABCD), gọi H là giao điểm của BC và AK.

Vì H thuộc BC, HAK(AEF) nên H là giao điểm của BC và (AEF).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close