Giải bài tập 2.32 trang 83 SGK Toán 12 tập 1 - Cùng khám phá

Cho hai vectơ \(\vec a = (2;4;1),\vec b = ( - 4;0;4)\). Toạ độ của vectơ \(\vec a + \vec b\) là A. \(( - 2; - 4; - 5)\). B. \(( - 2; - 4;5)\). C. \(( - 2;4;5)\). D. \((2;4; - 5)\).

Đề bài

Cho hai vectơ \(\vec a = (2;4;1),\vec b = ( - 4;0;4)\). Toạ độ của vectơ \(\vec a + \vec b\) là

A. \(( - 2; - 4; - 5)\).

B. \(( - 2; - 4;5)\).

C. \(( - 2;4;5)\).

D. \((2;4; - 5)\).

Phương pháp giải - Xem chi tiết

Áp dụng biểu thức toạ độ của tổng hai vectơ: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a  = ({x_1};{y_1};{z_1}),\overrightarrow b  = ({x_2};{y_2};{z_2})\) thì \(\overrightarrow a  + \overrighta.rrow b  = ({x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2})\)

Lời giải chi tiết

\(\overrightarrow a  + \overrightarrow b  = ({x_1} + {x_2};{y_1} + {y_2};{z_1} + {z_2}) = \left( {2 - 4;4 + 0;1 + 4} \right) = \left( { - 2;4;5} \right)\)

Chọn C.

  • Giải bài tập 2.33 trang 83 SGK Toán 12 tập 1 - Cùng khám phá

    Cho ba điểm \(A(3;5;2),B(2;2;1),C(1; - 1;4)\). Toạ độ của vectơ \(\overrightarrow {AB} + \overrightarrow {AC} \) là A. \((3;9;1)\). B. \(( - 3; - 9;1)\). C. \((6;6;7)\). D. \((1;3; - 3)\).

  • Giải bài tập 2.34 trang 84 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, cho hình lập phương (OABC.{O^prime }{A^prime }{B^prime }{C^prime }) có (A(a;0;0),C(0;a;0)), ({O^prime }(0;0;a)). (M) là trung điểm đoạn (A{C^prime }). Toạ độ của (M) là A. (left( { - frac{a}{2};frac{a}{2};frac{a}{2}} right)). B. (left( { - frac{a}{2}; - frac{a}{2}; - frac{a}{2}} right)). C. (left( {frac{a}{2};frac{a}{2};frac{a}{2}} right)). D. (left( {frac{a}{2};frac{a}{2}; - frac{a}{2}} right)).

  • Giải bài tập 2.35 trang 83 SGK Toán 12 tập 1 - Cùng khám phá

    Cho ba điểm \(A(0;4;2),B(2;0;1),C(1; - 1;0)\). Trọng tâm của tam giác ABC là A. \(G\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\). B. \(G(3;3;3)\). C. \(G( - 1; - 1; - 1)\). D. \(G(1;1;1)\).

  • Giải bài tập 2.36 trang 84 SGK Toán 12 tập 1 - Cùng khám phá

    Tam giác ABC có \(A(1;0;1),B(0;2;3),C(2;1;0)\). Độ dài đường trung tuyến AM là A. \(\frac{1}{2}\). B. \(\frac{{\sqrt {11} }}{2}\). C. \(\frac{{\sqrt {12} }}{2}\). D. \(\frac{{\sqrt {10} }}{2}\).

  • Giải bài tập 2.37 trang 84 SGK Toán 12 tập 1 - Cùng khám phá

    Cho ba lực \({\vec F_1},{\vec F_2},{\vec F_3}\) lần lượt có cường độ \(2{\rm{N}},4{\rm{N}},5{\rm{N}}\) được đặt vào chất điểm \(M\). Biết rằng góc tạo bởi hai lực bất kỳ trong ba lực đều bằng \({60^\circ }\). Cường độ của hợp lực tác dụng lên \(M\) là: A. \(45{\rm{N}}\). B. \(\sqrt {45} {\rm{N}}\). C. \(\sqrt {83} {\rm{N}}\). D. \(83{\rm{N}}\).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close