-
Lý thuyết Tính đơn điệu và cực trị của hàm số
1. Tính đơn điệu của hàm số và dấu của đạo hàm Định lý
Xem chi tiết -
Lý thuyết Tính đơn điệu và cực trị của hàm số của hàm số
Tính đơn điệu và cực trị của hàm số của hàm số Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b), (có thể a là \( - \infty \);b là \( + \infty \)) Hàm số y = f(x) đồng biến trên khoảng K nếu f’(x) > 0 Hàm số y = f(x) đồng biến trên khoảng K nếu f’(x) < 0
Xem chi tiết -
Bài1.1 trang 8
Cho hàm số liên tục trên các khoảng \(( - \infty ;1)\),\((1; + \infty )\)và có bảng biến thiên như sau Xác định các khoảng đơn điệu và cực trị của hàm số đã cho
Xem chi tiết -
Bài 1.2 trang 9
a) (y = - {x^3} + {x^2} - 5) b) (y = sqrt {{x^2} - x - 20} ) c) (y = {e^{{x^2}}}) d) (y = frac{x}{{{x^2} + 4}})
Xem chi tiết -
Bài 1.3 trang 9
a) (y = frac{x}{3}{(x - 3)^2}) b) (y = left| x right|) c) (y = {3^{x - 2{x^2}}}) d) (y = ln ({x^2} + e))
Xem chi tiết -
Bài 1.5 trang 9
Cho hàm số \(y = f(x)\)liên tục trên đoạn \([0;3]\) thõa mãn \(f'\left( {\frac{1}{3}} \right) = f'(1) = f'\left( {\frac{5}{2}} \right) = 0\)và có đồ thị là đường cong như hình 1.5. Xác định các khoảng đơn điệu và tìm cực trị hàm số đã cho trên khoảng \((0;3)\)
Xem chi tiết -
Bài 1.6 trang 9
Cho hàm số \(y = f(x)\)có đạo hàm là \(y' = f'(x) = x{(x - 1)^2}(x + 3)\)với \(\forall x \in R\) , xác định các khoảng đồng biến nghịch biến và điểm cực trị của hàm sô \(f(x)\) đã cho
Xem chi tiết -
Bài 1.7 trang 9
Thể tích \(V\) của 1 kg nước (tính bằng cm3¬) ở nhiệt độ \(T\) (đơn vị: oC) khi \(T\) thay đổi từ 0oC đến 30oC được cho xấp xỉ bởi công thức: \(V = 999,87 - 0.06426T + 0,0085043{T^2} - 0,0000769{T^3}\) (Nguồn: James Stewart,J(2015).Calculus.Cengage Learning 8th edition, p.284) Tìm nhiệt độ \({T_0} \in (0;30)\) kể từ nhiệt độ \({T_0}\) trở lên thì thể tích tăng( làm tròn kết quả đến hàng đơn vị
Xem chi tiết