Giải bài 4 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1Xét tính bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 1} \right)^n}\). Đề bài Xét tính bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 1} \right)^n}\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về dãy bị chặn để xét tính bị chặn của dãy số: + Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn trên nếu tồn tại một số M sao cho \({u_n} \le M,\forall n \in \mathbb{N}*\). + Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn dưới nếu tồn tại một số m sao cho \({u_n} \ge m,\forall n \in \mathbb{N}*\). + Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, nghĩa là tồn tại các số M và m sao cho \(m \le {u_n} \le M,\forall n \in \mathbb{N}*\). Lời giải chi tiết Ta có: \( - 1 \le {\left( { - 1} \right)^n} \le 1\) với mọi \(n \in \mathbb{N}*\). Do đó, dãy số \(\left( {{u_n}} \right)\) là dãy số bị chặn.
|