Lý thuyết Khai căn bậc hai với phép nhân và phép chia Toán 9 Kết nối tri thức1. Khai căn bậc hai và phép nhân Liên hệ giữa phép khai căn bậc hai và phép nhân Tổng hợp Đề thi vào 10 có đáp án và lời giải Toán - Văn - Anh 1. Khai căn bậc hai và phép nhân Liên hệ giữa phép khai căn bậc hai và phép nhân
Ví dụ: \(\sqrt {27} .\sqrt 3 = \sqrt {27.3} = \sqrt {81} = 9\) \(\sqrt 5 \left( {\sqrt {125} + \sqrt 5 } \right) = \sqrt 5 .\sqrt {125} + \sqrt 5 .\sqrt 5 = \sqrt {5.125} + \sqrt {5.5} = 25 + 5 = 30\) Chú ý: - Kết quả trên có thể mở rộng cho nhiều biểu thức không âm, chẳng hạn: \(\sqrt A .\sqrt B .\sqrt C = \sqrt {A.B.C} \) (với \(A \ge 0,B \ge 0,C \ge 0\)). Ví dụ: \(\sqrt 3 .\sqrt 5 .\sqrt {15} = \sqrt {3.5.15} = \sqrt {225} = 15\) - Nếu \(A \ge 0,B \ge 0,C \ge 0\) thì \(\sqrt {{A^2}{B^2}{C^2}} = ABC\). Ví dụ: Với \(a \ge 0,b < 0\) thì \(\sqrt {25{a^2}{b^2}} = \sqrt {{5^2}.{a^2}.{{\left( { - b} \right)}^2}} = \sqrt {{5^2}} .\sqrt {{a^2}} .\sqrt {{{\left( { - b} \right)}^2}} = 5.a.\left( { - b} \right) = - 5ab\) 2. Khai căn bậc hai và phép chia Liên hệ giữa phép khai căn bậc hai và phép chia
Ví dụ: \(\frac{{\sqrt 8 }}{{\sqrt 2 }} = \sqrt {\frac{8}{2}} = \sqrt 4 = 2\); Với \(a > 0\) thì \(\frac{{\sqrt {52{a^3}} }}{{\sqrt {13a} }} = \sqrt {\frac{{52{a^3}}}{{13a}}} = \sqrt {4{a^2}} = \sqrt {{{\left( {2a} \right)}^2}} = 2a\). ![]() ![]()
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|