Giải bài tập 6 trang 56 SGK Toán 9 tập 1 - Chân trời sáng tạoChứng minh rằng: a) (frac{{asqrt b - bsqrt a }}{{sqrt {ab} }}:frac{1}{{sqrt a + sqrt b }} = a - b) với a > 0; b > 0 b) (left( {1 + frac{{a + sqrt a }}{{sqrt a + 1}}} right)left( {1 - frac{{a - sqrt a }}{{sqrt a - 1}}} right) = 1 - a) với a ( ge ) 0 và a ( ne )1 Đề bài Chứng minh rằng: a) \(\frac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a + \sqrt b }} = a - b\) với a > 0; b > 0 b) \(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) = 1 - a\) với a \( \ge \) 0 và a \( \ne \)1 Video hướng dẫn giải Phương pháp giải - Xem chi tiết Phân tích xuất hiện nhân tử chung, tính toán vế trái rồi tính đưa về dạng vế phải. Lời giải chi tiết a) \(\frac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a + \sqrt b }} = a - b\) với a > 0; b > 0 Xét vế trái, ta có: \(\begin{array}{l}VT = \frac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a + \sqrt b }}\\ = \frac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\left( {\sqrt a + \sqrt b } \right)\\ = \left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)\\ = a - b = VP\end{array}\) Vậy \(\frac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a + \sqrt b }} = a - b\) b) \(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) = 1 - a\) với a \( \ge \) 0 và a \( \ne \)1 Xét vế trái ta có: \(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) = \left( {1 + \frac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{\sqrt a \left( {\sqrt a - 1} \right)}}{{\sqrt a - 1}}} \right)\) \( = \left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right) = 1 - {\left( {\sqrt a } \right)^2} = 1 - a\) = VP. Vậy \(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) = 1 - a\)
|