Giải bài tập 4.18 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

Ở \({45^^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình: \({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\) với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) = - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L. a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\). b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thờ

Đề bài

Ở \({45^\circ }C\), phản ứng hóa học phân hủy \({N_2}{O_5}\) xảy ra theo phương trình:

\({N_2}{O_5} \to 2N{O_2} + \frac{1}{2}{O_2}\)

với nồng độ \(c(t)\) (mol/L) của \({N_2}{O_5}\) \((c(t) > 0)\) tại thời điểm \(t\) giây (t \( \ge 0\)) thỏa mãn \(c'(t) =  - 0,0005c(t)\). Biết khi \(t = 0\), nồng độ ban đầu của \({N_2}{O_5}\) là 0,05 mol/L.

a) Xét hàm số \(y(t) = \ln c(t)\) với \(t \ge 0\). Tính \(y'(t)\), từ đó tìm \(y(t)\).

b) Biết rằng nồng độ trung bình của \({N_2}{O_5}\) (mol/L) từ thời điểm \(a\) giây đến thời điểm \(b\) giây (\(a < b\)) được cho bởi công thức:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)

Tính nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây.

Phương pháp giải - Xem chi tiết

a)

- Sử dụng công thức \(c'(t) =  - 0,0005c(t)\), suy ra \(y'(t)\) từ định nghĩa của hàm \(y(t) = \ln c(t)\)

- Từ \(y'(t)\), tính tích phân để tìm \(y(t)\).

b)

- Tính nồng độ trung bình bằng cách sử dụng công thức:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt\)

- Sử dụng hàm \(c(t)\) đã biết từ câu a để tính tích phân.

Lời giải chi tiết

a)

- Ta có:

\(y(t) = \ln c(t)\)

Lấy đạo hàm của \(y(t)\):

\(y'(t) = \frac{d}{{dt}}[\ln c(t)] = \frac{{c'(t)}}{{c(t)}}\)

- Theo đề bài, \(c'(t) =  - 0,0005c(t)\), do đó:

\(y'(t) = \frac{{ - 0,0005c(t)}}{{c(t)}} =  - 0,0005\)

- Tính \(y(t)\) bằng cách tích phân \(y'(t)\):

\(y(t) = \int {y'} (t){\mkern 1mu} dt = \int  -  0,0005{\mkern 1mu} dt =  - 0,0005t + C\)

- Khi \(t = 0\), ta có \(c(0) = 0,05{\mkern 1mu} {\rm{mol/L}}\), do đó:

\(y(0) = \ln c(0) = \ln 0,05\)

Vậy, \(C = \ln 0,05\).

- Kết luận:

\(y(t) =  - 0,0005t + \ln 0,05\)

b)

- Nồng độ trung bình của \({N_2}{O_5}\) từ thời điểm 10 giây đến thời điểm 20 giây là:

\(\frac{1}{{b - a}}\int_a^b c (t){\mkern 1mu} dt = \frac{1}{{20 - 10}}\int_{10}^{20} c (t){\mkern 1mu} dt = \frac{1}{{10}}\int_{10}^{20} c (t){\mkern 1mu} dt\)

- Từ câu a, ta biết \(c(t) = {e^{y(t)}} = {e^{ - 0,0005t + \ln 0,05}} = 0,05{e^{ - 0,0005t}}\).

- Tính tích phân:

\(\int_{10}^{20} 0 ,05{e^{ - 0,0005t}}{\mkern 1mu} dt = 0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt\)

- Tích phân của \({e^{ - 0,0005t}}\) là:

\(\int {{e^{ - 0,0005t}}} {\mkern 1mu} dt = \frac{{{e^{ - 0,0005t}}}}{{ - 0,0005}} =  - 2000{e^{ - 0,0005t}}\)

- Do đó:

\(0,05\int_{10}^{20} {{e^{ - 0,0005t}}} {\mkern 1mu} dt = 0,05\left( { - 2000{e^{ - 0,0005t}}|_{10}^{20}} \right)\)

\( =  - 100\left( {{e^{ - 0,0005 \times 20}} - {e^{ - 0,0005 \times 10}}} \right)\)

\( =  - 100\left( {{e^{ - 0,01}} - {e^{ - 0,005}}} \right)\)

- Sử dụng giá trị gần đúng:

\({e^{ - 0,01}} \approx 0,99005,\quad {e^{ - 0,005}} \approx 0,99501\)

- Khi đó:

\( - 100\left( {0,99005 - 0,99501} \right) =  - 100 \times ( - 0,00496) = 0,496\)

- Nồng độ trung bình là:

\(\frac{1}{{10}} \times 0,496 = 0,0496{\mkern 1mu} {\rm{mol/L}}\)

  • Giải bài tập 4.17 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

    Hiệu suất của tim là lưu lượng máu được bơm bởi tim trên một đơn vị thời gian (lưu lượng máu chảy vào động mạch chủ). Để đo hiệu suất của tim, người ta bơm \(A\) (mg) chất chỉ thị màu vào tâm nhĩ phải, chảy qua tim rồi vào động mạch chủ và đo nồng độ chất chỉ thị màu còn lại ở tim đến thời điểm \(T(s)\) khi chất chỉ thị màu tan sạch. Gọi \(c(t)\) là nồng độ \(({\rm{mg/l}})\) chất chỉ thị màu tại thời điểm \(t\) (s) thì hiệu suất của tim được xác định bởi: \(F = \frac{A}{{\int_0^T c (t)dt}}{\mk

  • Giải bài tập 4.16 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Một lò xo có chiều dài tự nhiên là \({l_0} = 10{\mkern 1mu} {\rm{cm}}\)(Hình 4.9a). Để kéo giãn lò xo \(x{\mkern 1mu} ({\rm{m}})\) cần một lực có độ lớn \(f(x) = kx{\mkern 1mu} ({\rm{N}})\), trong đó \(k\) là độ cứng của lò xo và có giá trị không đổi. (Hình 4.9b). a) Tìm \(k\), biết dưới tác dụng của một lực 40 N, lò xo bị giãn và chiều dài của lò xo khi ấy là \({l_1} = 15{\mkern 1mu} {\rm{cm}}\). b) Nếu một lực có độ lớn \(f(x){\mkern 1mu} ({\rm{N}})\) làm biến dạng lò xo từ độ giãn \(a{\mke

  • Giải bài tập 4.15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Đường gấp khúc ABD trong Hình 4.8 là đồ thị vận tốc \(v(t)\) của một vật (t = 0 là thời điểm vật bắt đầu chuyển động). Trong khoảng thời gian mà \(v < 0\)thì vật chuyển động ngược chiều với khoảng thời gian mà \(v > 0\). a) Viết công thức của hàm số \(v(t)\) với \(t \in [0;9]\). b) Biết rằng quãng đường vật đi chuyển với vận tốc \(v = v(t)\) từ thời điểm \(t = a\) đến thời điểm \(t = b\) là \(s = \int_a^b | v(t)|{\mkern 1mu} dt\), tính quãng đường vật di chuyển được trong 9 giây kể từ khi vật

  • Giải bài tập 4.14 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Một quả bóng được ném lên từ độ cao \(1,5m\) với vận tốc ban đầu \(24m/s\). Biết gia tốc của quả bóng là \(a = - 9,8m/{s^2}\). a) Tính vận tốc của quả bóng tại thời điểm 1 giây sau khi được ném lên. b) Tính quãng đường quả bóng đi được từ lúc ném lên đến khi chạm đất lần đầu.

  • Giải bài tập 4.13 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Tính các tích phân sau: a) \(\int_{ - 1}^2 x (x + 1)dx\); b) \(\int_0^{\frac{\pi }{2}} {{{\cos }^2}} \frac{x}{2}dx\); c) \(\int_1^2 {{2^{1 - 3x}}} dx\); d) \(\int_0^{\frac{\pi }{4}} {{{\tan }^2}} xdx\); e) \(\int_1^4 {\left( {{e^{2x + 1}} - 3x\sqrt x } \right)} dx\); g) \(\int_1^4 | 5 - 3x|dx\).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close