Giải bài tập 4.12 trang 19 SGK Toán 12 tập 2 - Cùng khám phá

Cho các hàm số \(f(x)\), \(g(x)\) liên tục trên đoạn \([ - 1;3]\) thỏa mãn \(\int_{ - 1}^2 f (x)dx = 2\), \(\int_{ - 1}^3 f (x)dx = 6\), và \(\int_{ - 1}^2 g (x)dx = - 1\). Tính: a) \(\int_2^3 f (x)dx\); b) \(I = \int_{ - 1}^2 {\left( {x + 2f(x) - 3g(x)} \right)} dx\).

Đề bài

Cho các hàm số \(f(x)\), \(g(x)\) liên tục trên đoạn \([ - 1;3]\) thỏa mãn \(\int_{ - 1}^2 f (x)dx = 2\), \(\int_{ - 1}^3 f (x)dx = 6\), và \(\int_{ - 1}^2 g (x)dx =  - 1\). Tính:

a) \(\int_2^3 f (x)dx\);

b) \(I = \int_{ - 1}^2 {\left( {x + 2f(x) - 3g(x)} \right)} dx\).

Phương pháp giải - Xem chi tiết

a) Để tính \(\int_2^3 f (x){\mkern 1mu} dx\), ta sử dụng quy tắc tính tích phân trên đoạn chia nhỏ:

\(\int_{ - 1}^3 f (x){\mkern 1mu} dx = \int_{ - 1}^2 f (x){\mkern 1mu} dx + \int_2^3 f (x){\mkern 1mu} dx\)

Suy ra, ta có thể tính \(\int_2^3 f (x){\mkern 1mu} dx\) bằng cách lấy hiệu của \(\int_{ - 1}^3 f (x){\mkern 1mu} dx\) và \(\int_{ - 1}^2 f (x){\mkern 1mu} dx\).

b) Để tính tích phân \(I = \int_{ - 1}^2 {\left( {x + 2f(x) - 3g(x)} \right)} {\mkern 1mu} dx\), ta sử dụng quy tắc tích phân của một tổng:

\(\int {\left( {u(x) + v(x)} \right)} dx = \int u (x)dx + \int v (x)dx\)

Cụ thể:

\(I = \int_{ - 1}^2 x {\mkern 1mu} dx + 2\int_{ - 1}^2 f (x){\mkern 1mu} dx - 3\int_{ - 1}^2 g (x){\mkern 1mu} dx\)

Sau đó tính từng tích phân một cách riêng rẽ và cộng lại để có kết quả cuối cùng.

Lời giải chi tiết

a) Tính \(\int_2^3 f (x){\mkern 1mu} dx\) Ta có:

\(\int_{ - 1}^3 f (x){\mkern 1mu} dx = \int_{ - 1}^2 f (x){\mkern 1mu} dx + \int_2^3 f (x){\mkern 1mu} dx\)

Thay các giá trị đã biết:

\(6 = 2 + \int_2^3 f (x){\mkern 1mu} dx\)

Suy ra:

\(\int_2^3 f (x){\mkern 1mu} dx = 6 - 2 = 4\)

b) Tính \(I = \int_{ - 1}^2 {\left( {x + 2f(x) - 3g(x)} \right)} {\mkern 1mu} dx\) Ta có:

\(I = \int_{ - 1}^2 x {\mkern 1mu} dx + 2\int_{ - 1}^2 f (x){\mkern 1mu} dx - 3\int_{ - 1}^2 g (x){\mkern 1mu} dx\)

- Tính \(\int_{ - 1}^2 x {\mkern 1mu} dx\): 

\(\int_{ - 1}^2 x {\mkern 1mu} dx = \frac{{{x^2}}}{2}|_{ - 1}^2 = \frac{{{2^2}}}{2} - \frac{{{{( - 1)}^2}}}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} = 1,5\)

- Tính \(2\int_{ - 1}^2 f (x){\mkern 1mu} dx\):

\(2\int_{ - 1}^2 f (x){\mkern 1mu} dx = 2 \times 2 = 4\)

- Tính \( - 3\int_{ - 1}^2 g (x){\mkern 1mu} dx\):

\( - 3\int_{ - 1}^2 g (x){\mkern 1mu} dx =  - 3 \times ( - 1) = 3\)

Vậy:

\(I = 1,5 + 4 + 3 = 8,5\).

  • Giải bài tập 4.13 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Tính các tích phân sau: a) \(\int_{ - 1}^2 x (x + 1)dx\); b) \(\int_0^{\frac{\pi }{2}} {{{\cos }^2}} \frac{x}{2}dx\); c) \(\int_1^2 {{2^{1 - 3x}}} dx\); d) \(\int_0^{\frac{\pi }{4}} {{{\tan }^2}} xdx\); e) \(\int_1^4 {\left( {{e^{2x + 1}} - 3x\sqrt x } \right)} dx\); g) \(\int_1^4 | 5 - 3x|dx\).

  • Giải bài tập 4.14 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Một quả bóng được ném lên từ độ cao \(1,5m\) với vận tốc ban đầu \(24m/s\). Biết gia tốc của quả bóng là \(a = - 9,8m/{s^2}\). a) Tính vận tốc của quả bóng tại thời điểm 1 giây sau khi được ném lên. b) Tính quãng đường quả bóng đi được từ lúc ném lên đến khi chạm đất lần đầu.

  • Giải bài tập 4.15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Đường gấp khúc ABD trong Hình 4.8 là đồ thị vận tốc \(v(t)\) của một vật (t = 0 là thời điểm vật bắt đầu chuyển động). Trong khoảng thời gian mà \(v < 0\)thì vật chuyển động ngược chiều với khoảng thời gian mà \(v > 0\). a) Viết công thức của hàm số \(v(t)\) với \(t \in [0;9]\). b) Biết rằng quãng đường vật đi chuyển với vận tốc \(v = v(t)\) từ thời điểm \(t = a\) đến thời điểm \(t = b\) là \(s = \int_a^b | v(t)|{\mkern 1mu} dt\), tính quãng đường vật di chuyển được trong 9 giây kể từ khi vật

  • Giải bài tập 4.16 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

    Một lò xo có chiều dài tự nhiên là \({l_0} = 10{\mkern 1mu} {\rm{cm}}\)(Hình 4.9a). Để kéo giãn lò xo \(x{\mkern 1mu} ({\rm{m}})\) cần một lực có độ lớn \(f(x) = kx{\mkern 1mu} ({\rm{N}})\), trong đó \(k\) là độ cứng của lò xo và có giá trị không đổi. (Hình 4.9b). a) Tìm \(k\), biết dưới tác dụng của một lực 40 N, lò xo bị giãn và chiều dài của lò xo khi ấy là \({l_1} = 15{\mkern 1mu} {\rm{cm}}\). b) Nếu một lực có độ lớn \(f(x){\mkern 1mu} ({\rm{N}})\) làm biến dạng lò xo từ độ giãn \(a{\mke

  • Giải bài tập 4.17 trang 21 SGK Toán 12 tập 2 - Cùng khám phá

    Hiệu suất của tim là lưu lượng máu được bơm bởi tim trên một đơn vị thời gian (lưu lượng máu chảy vào động mạch chủ). Để đo hiệu suất của tim, người ta bơm \(A\) (mg) chất chỉ thị màu vào tâm nhĩ phải, chảy qua tim rồi vào động mạch chủ và đo nồng độ chất chỉ thị màu còn lại ở tim đến thời điểm \(T(s)\) khi chất chỉ thị màu tan sạch. Gọi \(c(t)\) là nồng độ \(({\rm{mg/l}})\) chất chỉ thị màu tại thời điểm \(t\) (s) thì hiệu suất của tim được xác định bởi: \(F = \frac{A}{{\int_0^T c (t)dt}}{\mk

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close