Giải bài tập 3.44 trang 73 SGK Toán 9 tập 1 - Cùng khám pháRút gọn biểu thức \(A = \left( {\frac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \frac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right)\left( {\sqrt 7 - \sqrt 5 } \right)\), ta thu được giá trị của A là A. \( - 2\). B. 2. C. \( - 1\). D. 1. Đề bài Rút gọn biểu thức \(A = \left( {\frac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \frac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right)\left( {\sqrt 7 - \sqrt 5 } \right)\), ta thu được giá trị của A là A. \( - 2\). B. 2. C. \( - 1\). D. 1. Phương pháp giải - Xem chi tiết Ta có: \(\frac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} = - \sqrt 7 ,\frac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }} = - \sqrt 5 \), từ đó rút gọn biểu thức. Lời giải chi tiết \(A = \left( {\frac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \frac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right)\left( {\sqrt 7 - \sqrt 5 } \right)\) \( = \left[ {\frac{{ - \sqrt 7 \left( {1 - \sqrt 2 } \right)}}{{1 - \sqrt 2 }} + \frac{{ - \sqrt 5 \left( {1 - \sqrt 3 } \right)}}{{1 - \sqrt 3 }}} \right]\left( {\sqrt 7 - \sqrt 5 } \right)\) \(\begin{array}{l} = \left( { - \sqrt 7 - \sqrt 5 } \right)\left( {\sqrt 7 - \sqrt 5 } \right)\\ = - \left( {\sqrt 7 - \sqrt 5 } \right)\left( {\sqrt 7 + \sqrt 5 } \right)\\ = - \left[ {{{\left( {\sqrt 7 } \right)}^2} - {{\left( {\sqrt 5 } \right)}^2}} \right]\\ = - 2\end{array}\) Chọn A
|