Giải bài tập 3.41 trang 73 SGK Toán 9 tập 1 - Cùng khám pháThứ tự từ nhỏ đến lớn của các số \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \) là A. \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \). B. \(5\sqrt 8 ,\;7\sqrt 6 ,\;8\sqrt 5 \). C. \(8\sqrt 5 ,\;7\sqrt 6 ,\;5\sqrt 8 \). D. \(7\sqrt 6 ,\;5\sqrt 8 ,\;8\sqrt 5 \). Đề bài Thứ tự từ nhỏ đến lớn của các số \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \) là A. \(5\sqrt 8 ,\;8\sqrt 5 ,\;7\sqrt 6 \). B. \(5\sqrt 8 ,\;7\sqrt 6 ,\;8\sqrt 5 \). C. \(8\sqrt 5 ,\;7\sqrt 6 ,\;5\sqrt 8 \). D. \(7\sqrt 6 ,\;5\sqrt 8 ,\;8\sqrt 5 \). Phương pháp giải - Xem chi tiết + Sử dụng công thức \(a\sqrt b = \sqrt {{a^2}b} \) khi \(a \ge 0,b \ge 0\) để đưa các thừa số vào trong dấu căn. + So sánh các căn thức vừa biến đổi được và rút ra kết luận. Lời giải chi tiết Ta có: \(5\sqrt 8 = \sqrt {{5^2}.8} = \sqrt {200} \), \(8\sqrt 5 = \sqrt {{8^2}.5} = \sqrt {320} \), \(7\sqrt 6 = \sqrt {{7^2}.6} = \sqrt {294} \) Vì \(200 < 294 < 320\) nên \(\sqrt {200} < \sqrt {294} < \sqrt {320} \). Do đó, các số sắp xếp theo thứ tự từ nhỏ đến lớn là \(5\sqrt 8 ,\;7\sqrt 6 ,\;8\sqrt 5 \). Chọn B
|