Giải bài tập 3.40 trang 73 SGK Toán 9 tập 1 - Cùng khám pháXét phát biểu I: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \)” và phát biểu II: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a + b} = \sqrt a + \sqrt b \)” Trong các khẳng định sau, khẳng định nào là đúng? A. Cả hai phát biểu I và II đều đúng. B. Cả hai phát biểu I và II đều sai. C. Phát biểu I đúng và phát biểu II sai. D. Phát biểu I sai và phát biểu II đúng. Đề bài Xét phát biểu I: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \)” và phát biểu II: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a + b} = \sqrt a + \sqrt b \)” Trong các khẳng định sau, khẳng định nào là đúng? A. Cả hai phát biểu I và II đều đúng. B. Cả hai phát biểu I và II đều sai. C. Phát biểu I đúng và phát biểu II sai. D. Phát biểu I sai và phát biểu II đúng. Phương pháp giải - Xem chi tiết Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \). Lời giải chi tiết Ta có: Nếu a và b là hai số không âm bất kì thì \(\sqrt {a.b} = \sqrt a .\sqrt b \). Vì \(\sqrt {2 + 3} \ne \sqrt 2 + \sqrt 3 \) nên phát biểu II: “Nếu a và b là hai số không âm bất kì thì \(\sqrt {a + b} = \sqrt a + \sqrt b \)” sai. Do đó, phát biểu I đúng và phát biểu II sai. Chọn C
|