Giải bài 13 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho mặt phẳng (left( P right)) đi qua ba điểm (Aleft( {0;1;1} right),Bleft( {3;2;2} right),Cleft( {4;3;5} right)). a) Mặt phẳng (left( P right)) có cặp vectơ chỉ phương là (overrightarrow {AB} = left( {3;1;1} right);overrightarrow {AC} = left( {4;2;4} right)). b) Mặt phẳng (left( P right)) có vectơ pháp tuyến là (overrightarrow n = left( {1;4;1} right)). c) Mặt phẳng (left( P right)) đi qua điểm (Mleft( {1;2

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho mặt phẳng \(\left( P \right)\) đi qua ba điểm \(A\left( {0;1;1} \right),B\left( {3;2;2} \right),C\left( {4;3;5} \right)\).

a) Mặt phẳng \(\left( P \right)\) có cặp vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {3;1;1} \right);\overrightarrow {AC}  = \left( {4;2;4} \right)\).

b) Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;4;1} \right)\).

c) Mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {1;2;4} \right)\).

d) Mặt phẳng \(\left( P \right)\) vuông góc với đường thẳng \(d:\frac{{x + 2}}{1} = \frac{y}{{ - 4}} = \frac{{z + 1}}{1}\).

Phương pháp giải - Xem chi tiết

‒ Lập phương trình tổng quát của mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\overrightarrow a ,\overrightarrow b \):

Bước 1: Tìm một vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } \right]\).

Bước 2: Lập phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n \).

‒ Điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) nếu \(A{x_0} + B{y_0} + C{z_0} + D = 0\).

‒ Mặt phẳng \(\left( P \right)\) vuông góc với đường thẳng \(d\) nếu hai vectơ \(\overrightarrow {{n_P}} \) và \(\overrightarrow {{u_d}} \) cùng phương.

Lời giải chi tiết

Mặt phẳng \(\left( P \right)\) có cặp vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {3;1;1} \right);\overrightarrow {AC}  = \left( {4;2;4} \right)\). Vậy a) đúng.

Ta có: \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1.4 - 1.2;4.1 - 3.4;3.2 - 1.4} \right) = \left( {2; - 8;2} \right) = 2\left( {1; - 4;1} \right)\).

Vậy \(\overrightarrow n  = \left( {1; - 4;1} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\). Vậy b) sai.

Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\left( {0;1;1} \right)\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 4;1} \right)\) là:

\(1\left( {x - 0} \right) - 4\left( {y - 1} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow x - 4y + z + 3 = 0\).

Ta có: \(1 - 4.2 + 4 + 3 = 0\). Do đó mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {1;2;4} \right)\). Vậy c) đúng.

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 4;1} \right)\).

Đường thẳng \(d:\frac{{x + 2}}{1} = \frac{y}{{ - 4}} = \frac{{z + 1}}{1}\) có vectơ chỉ phương \(\overrightarrow u  = \left( {1; - 4;1} \right)\).

Vì \(\overrightarrow n  = \overrightarrow u \) nên mặt phẳng \(\left( P \right)\) vuông góc với đường thẳng \(d\). Vậy d) đúng.

a) Đ.

b) S.

c) Đ.

d) Đ.

  • Giải bài 14 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho điểm (Mleft( {2;0;0} right)) và mặt phẳng (left( P right):2x - y - 2z + 11 = 0). a) Điểm (Aleft( {0;5;3} right)) thuộc mặt phẳng (left( P right)). b) (dleft( {M,left( P right)} right) = frac{5}{9}). c) Đường thẳng (MA) vuông góc với (left( P right)). d) Đường thẳng (d:frac{{x - 7}}{1} = frac{{y - 9}}{{ - 2}} = frac{{z - 31}}{2}) song song với (left( P right)).

  • Giải bài 15 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hai điểm (Aleft( {2;1; - 2} right),Bleft( { - 2; - 2; - 9} right)) và đường thẳng (d:left{ begin{array}{l}x = t\y = - 1 + t\z = - tend{array} right.). a) Điểm (A) thuộc đường thẳng (d). b) Điểm (B) thuộc đường thẳng (d). c) Đường thẳng (AB) vuông góc với (d). d) (overrightarrow {AB} = left( {4;3; - 7} right)).

  • Giải bài 16 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hai đường thẳng (d:frac{{x + 2}}{2} = frac{y}{{ - 1}} = frac{{z + 1}}{2}) và (d':frac{{x - 2}}{3} = frac{y}{{ - 4}} = frac{{z - 1}}{{ - 5}}). a) Đường thẳng (d) đi qua điểm (Mleft( { - 2;0; - 1} right)). b) Đường thẳng (d) có vectơ chỉ phương (overrightarrow a = left( { - 4;2; - 4} right)). c) Đường thẳng (d') không đi qua điểm (Nleft( {2;0;1} right)). d) Đường thẳng (d) vuông góc với (d').

  • Giải bài 17 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 3} right)^2} + {left( {z + 2} right)^2} = 9). a) (left( S right)) có tâm (Ileft( { - 1; - 3;2} right)). b) (left( S right)) có bán kính (R = 9). c) Điểm (Oleft( {0;0;0} right)) nằm ngoài mặt cầu (left( S right)). d) Điểm (Mleft( {1;3;1} right)) nằm trên mặt cầu (left( S right)).

  • Giải bài 1 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) và \(\left( Q \right):x - 4y + \left( {m - 1} \right)z + 1 = 0\) với \(m\) là tham số. Tìm giá trị của tham số \(m\) để mặt phẳng \(\left( P \right)\) vuông góc với mặt phẳng \(\left( Q \right)\).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close