Giải bài 12 trang 63 sách bài tập toán 12 - Chân trời sáng tạoCho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z - 3} right)^2} = 9), Điểm nào sau đây nằm ngoài mặt cầu (left( S right))? A. (Mleft( { - 1;2;5} right)). B. (Nleft( {0;3;2} right)). C. (Pleft( { - 1;6; - 1} right)). D. (Qleft( {2;4;5} right)). Đề bài Cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), Điểm nào sau đây nằm ngoài mặt cầu \(\left( S \right)\)? A. \(M\left( { - 1;2;5} \right)\). B. \(N\left( {0;3;2} \right)\). C. \(P\left( { - 1;6; - 1} \right)\). D. \(Q\left( {2;4;5} \right)\). Phương pháp giải - Xem chi tiết Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\). + Nếu \(IA < R\): \(A\) nằm trong mặt cầu. + Nếu \(IA = R\): \(A\) nằm trên mặt cầu. + Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu. Lời giải chi tiết Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) có tâm \({\rm{I}}\left( {1;2;3} \right)\), bán kính \(R = \sqrt 9 = 3\). Ta có: \(IM = \sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2}} = 2\sqrt 2 < R\). Vậy \(M\left( { - 1;2;5} \right)\) nằm trong mặt cầu \(\left( S \right)\). \(IN = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {3 - 2} \right)}^2} + {{\left( {2 - 3} \right)}^2}} = \sqrt 3 < R\). Vậy \(N\left( {0;3;2} \right)\) nằm trong mặt cầu \(\left( S \right)\). \(IP = \sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {6 - 2} \right)}^2} + {{\left( { - 1 - 3} \right)}^2}} = 6 > R\). Vậy \(P\left( { - 1;6; - 1} \right)\) nằm ngoài mặt cầu \(\left( S \right)\). \(IQ = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2}} = 3 = R\). Vậy \(Q\left( {2;4;5} \right)\) nằm trên mặt cầu \(\left( S \right)\). Chọn C.
|