Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Cùng khám phá1. Hệ trục tọa độ trong không gian 1. Hệ trục tọa độ trong không gian
Lưu ý: - Điểm O được gọi là gốc tọa độ - Ba trục Ox, Oy, Oz lần lượt được gọi là trục hoành, trục tung, trục cao - Ba mặt phẳng (Oxy), (Oxz), (Oyz) đôi một vuông góc với nhau, được gọi là các mặt phẳng tọa độ. Không gian gắn với hệ tọa độ Oxyz được gọi là không gian Oxyz - Ta quy ước gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) tương ứng là ba vecto đơn vị trên ba trục Ox, Oy, Oz. Từ nay trở đi, nếu không nói gì thêm thì ta hiểu Không gian Oxyz đã có bộ ba vecto đơn vị trên các trục là \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \). Vì các vecto \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) có độ dài bằng 1 và đôi một vuông góc với nhau nên: \({\overrightarrow i ^2} = {\overrightarrow j ^2} = {\overrightarrow k ^2} = 1\) \(\overrightarrow i .\overrightarrow j = \overrightarrow j .\overrightarrow k = \overrightarrow k .\overrightarrow i = 0\) 2. Tọa độ của một điểm
3. Tọa độ của vecto
Ví dụ: Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A’B’C có A(1;0;2), B(3;2;5), C(7;-3;9). Tìm tọa độ của \(\overrightarrow {AA'} \). Tìm tọa độ của các điểm B’, C’. Lời giải Ta có: \(\overrightarrow {AA'} = ({x_{A'}} - {x_A};{y_{A'}} - {y_A};{z_{A'}} - {z_A}) = (4;0; - 1)\). Gọi tọa độ của điểm B’ là (x,y,z) thì \(\overrightarrow {BB'} \) = (x-3;y-2;z-5). Vì ABC.A’B’C’ là hình lăng trụ nên ABB’A’ là hình bình hành, suy ra \(\overrightarrow {AA'} \) = \(\overrightarrow {BB'} \). Do đó \(\left\{ \begin{array}{l}x - 3 = 4\\y - 2 = 0\\z - 5 = - 1\end{array} \right.\) hay x = 7, y = 2, z = 4. Vậy B’(7;2;4). Lập luận tương tự suy ra C’(11;-3;8).
|