Lý thuyết Hệ thức giữa cạnh và góc của tam giác vuông Toán 9 Chân trời sáng tạo1. Hệ thức giữa cạnh và góc của tam giác vuông Công thức tính cạnh góc vuông theo cạnh huyền và sin, côsin của các góc nhọn 1. Hệ thức giữa cạnh và góc của tam giác vuông Công thức tính cạnh góc vuông theo cạnh huyền và sin, côsin của các góc nhọn
Ví dụ 1: Trong tam giác ABC vuông tại A, ta có: \(\begin{array}{l}b = a.\sin B = a.\cos C;\\c = a.\sin C = a.\cos B.\end{array}\) Công thức tính cạnh góc vuông theo cạnh góc vuông kia và tang, côtang của các góc nhọn
Ví dụ 2: Trong tam giác ABC vuông tại A, ta có: \(\begin{array}{l}b = c.\tan B = c.\cot C;\\c = b.\tan C = b.\cot B.\end{array}\) 2. Giải tam giác vuông Giải tam giác vuông là tính các cạnh và góc chưa biết của tam giác đó.
|