Lý thuyết Bất phương trình bậc nhất một ẩn Toán 9 Kết nối tri thức

1. Khái niệm bất phương trình bậc nhất một ẩn Khái niệm bất phương trình bậc nhất một ẩn

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

1. Khái niệm bất phương trình bậc nhất một ẩn

Khái niệm bất phương trình bậc nhất một ẩn

Bất phương trình dạng \(ax + b < 0\) (hoặc \(ax + b > 0\); \(ax + b \le 0\); \(ax + b \ge 0\)) trong đó a, b là hai số đã cho, \(a \ne 0\) được gọi là bất phương trình bậc nhất một ẩn x.

Ví dụ: \(3x + 16 \le 0\); \( - 3x > 0\) là các bất phương trình bậc nhất một ẩn x.

\({x^2} - 4 \ge 0\) không phải là một bất phương trình bậc nhất một ẩn x vì \({x^2} - 4\) là một đa thức bậc hai.

\(3x - 2y < 2\) không phải là một bất phương trình bậc nhất một ẩn vì đa thức \(3x - 2y\) là đa thức với hai biến x và y.

Nghiệm của bất phương trình

- Số \({x_0}\) là một nghiệm của bất phương trình \(A\left( x \right) < B\left( x \right)\) nếu \(A\left( {{x_0}} \right) < B\left( {{x_0}} \right)\) là khẳng định đúng.

- Giải một bất phương trình là tìm tất cả các nghiệm của bất phương trình đó.

Ví dụ:

Số -2 là nghiệm của bất phương trình \(2x - 10 < 0\) vì \(2.\left( { - 2} \right) - 10 =  - 4 - 10 =  - 14 < 0\).

Số 6 không là nghiệm của bất phương trình \(2x - 10 < 0\) vì \(2.6 - 10 = 12 - 10 = 2 > 0\).

2. Cách giải bất phương trình bậc nhất một ẩn

Bất phương trình bậc nhất một ẩn \(ax + b < 0\left( {a \ne 0} \right)\) được giải như sau:

\(\begin{array}{l}ax + b < 0\\ax <  - b\end{array}\)

- Nếu \(a > 0\) thì \(x < \frac{{ - b}}{a}\).

- Nếu \(a < 0\) thì \(x >  - \frac{b}{a}\).

Chú ý: Các bất phương trình \(ax + b > 0\), \(ax + b \le 0\), \(ax + b \ge 0\) được giải tương tự.

Ví dụ: Giải bất phương trình \( - 2x - 4 > 0\)

Lời giải: Ta có:

\(\begin{array}{l} - 2x - 4 > 0\\ - 2x > 0 + 4\\ - 2x > 4\\x < 4.\left( { - \frac{1}{2}} \right)\\x <  - 2\end{array}\)

Vậy nghiệm của bất phương trình là \(x <  - 2\).

Chú ý: Ta cũng có thể giải được các bất phương trình một ẩn đưa được về dạng \(ax + b < 0\), \(ax + b > 0\), \(ax + b \le 0\), \(ax + b \ge 0\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close