Giải mục 1 trang 28,29,30 SGK Toán 12 tập 2 - Cánh diềuTính diện tích hình phẳng Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Lựa chọn câu để xem lời giải nhanh hơn
HĐ1 Trả lời câu hỏi Hoạt động 1 trang 28 SGK Toán 12 Cánh diều Cho hàm số \(y = f(x) = {x^3} - 2{x^2} - x + 2\) có đồ thị minh họa ở Hình 11. a) Quan sát Hình 11, hãy cho biết các hình phẳng \({H_1},{H_2},{H_3}\) lần lượt được giới hạn bởi các đường thẳng và đồ thị hàm số nào b) Tính diện tích \({S_{{H_1}}},{S_{{H_2}}},{S_{{H_3}}}\) của các hình phẳng đó c) Gọi H là tập hợp của các hình phẳng \({H_1},{H_2},{H_3}\). Hình phẳng H được gọi là hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và các đường thẳng x = 0, x = 3. Chứng tỏ rằng diện tích \({S_H}\) của hình phẳng H bằng \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^3 {\left| {f(x)} \right|dx} \) Phương pháp giải: a) Quan sát hình vẽ b) Sử dụng công thức tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b là: \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \) c) Sử dụng tính chất của tích phân \(\int\limits_a^b {f(x)} dx = \int\limits_a^c {f(x)} dx + \int\limits_c^b {f(x)} dx\) Lời giải chi tiết: a) Hình \({H_1}\) được giới hạn bởi các đường thẳng x = 0, x = 1 và đồ thị hàm số y = f(x) Hình \({H_2}\) được giới hạn bởi các đường thẳng x = 1, x = 2 và đồ thị hàm số y = f(x) Hình \({H_3}\) được giới hạn bởi các đường thẳng x = 2, x = 3 và đồ thị hàm số y = f(x) b) \({S_{{H_1}}} = \int\limits_0^1 {f(x)dx} = \int\limits_0^1 {\left( {{x^3} - 2{x^2} - x + 2} \right)dx} = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_0^1 = \frac{{13}}{{12}}\) \(\int\limits_1^2 {f(x)dx = \int\limits_1^2 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_1^2 = - \frac{5}{{12}} \to {S_{{H_2} = }}\frac{5}{{12}}\) \({S_{{H_3}}} = \int\limits_2^3 {f(x)dx = \int\limits_2^3 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_2^3 = \frac{{37}}{{12}}\) c) \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^1 {f(x)dx} + \left| {\int\limits_1^2 {f(x)dx} } \right| + \int\limits_2^3 {f(x)dx} = \int\limits_0^3 {\left| {f(x)} \right|dx} \) HĐ2 Trả lời câu hỏi Hoạt động 2 trang 30 SGK Toán 12 Cánh diều Cho các hàm số \(y = {2^x}\), y = x Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số \(y = {2^x}\) Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số y = x Gọi S là phẳng giới hạn bởi các đồ thị hàm số \(y = {2^x}\), y = x và hai đường thẳng x = 1, x = 2 (Hình 14) a) Biểu diễn S theo \({S_1},{S_2}\) b) So sánh S và \(\int\limits_1^2 {({2^x} - x)dx} \) Phương pháp giải: Quan sát hình vẽ Lời giải chi tiết: a) \(S = {S_1} - {S_2}\) b) \(S = {S_1} - {S_2}\) \(\int\limits_1^2 {({2^x} - x)dx} = \int\limits_1^2 {{2^x}dx} - \int\limits_1^2 {xdx} = {S_1} - {S_2}\) Vậy S = \(\int\limits_1^2 {({2^x} - x)dx} \)
|