Giải câu hỏi trang 68, 69, 70 SGK Toán 9 tập 2 - Kết nối tri thứcVẽ đường tròn tâm O có bán kính bằng 2cm và dây cung AB có độ dài bằng 2cm. Lấy một điểm C tùy ý nằm trên cung lớn AmB (H.9.2). a) Cho biết số đo góc ở tâm AOB và số đo của cung bị chắn AB. b) Đo góc ACB và so sánh với kết quả của bạn bên cạnh. c) Lấy điểm D tùy ý nằm trên cung ACB. Đo góc ADB và so sánh với các góc ACB và AOB. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Lựa chọn câu để xem lời giải nhanh hơn
HĐ Video hướng dẫn giải Trả lời câu hỏi Hoạt động trang 68 SGK Toán 9 Kết nối tri thức Vẽ đường tròn tâm O có bán kính bằng 2cm và dây cung AB có độ dài bằng 2cm. Lấy một điểm C tùy ý nằm trên cung lớn AmB (H.9.2). a) Cho biết số đo góc ở tâm AOB và số đo của cung bị chắn AB. b) Đo góc ACB và so sánh với kết quả của bạn bên cạnh. c) Lấy điểm D tùy ý nằm trên cung ACB. Đo góc ADB và so sánh với các góc ACB và AOB. Phương pháp giải: a) Chứng minh tam giác AOB đều, suy ra \(\widehat {AOB} = {60^o}\). Do đó, \(sđ\overset\frown{AB}=\widehat{AOB}={{60}^{o}}\) (góc ở tâm chắn cung AB). b, c) Sử dụng thước đo góc đo được góc ACB, góc ADB đều bằng 30 độ. Do đó, \(\widehat {ACB} = \widehat {ADB}\) Lời giải chi tiết: Vì A, B thuộc đường tròn tâm O nên \(OA = OB = 2cm\). Tam giác AOB có: \(OA = OB = AB = 2cm\) nên tam giác ABO đều. Do đó, \(\widehat {AOB} = {60^o}\). Suy ra: \(sđ\overset\frown{AB}=\widehat{AOB}={{60}^{o}}\) (góc ở tâm chắn cung AB). b) Sử dụng thước đo góc, ta đo được \(\widehat {ACB} = {30^o}\). c) Sử dụng thước đo góc, ta đo được \(\widehat {ADB} = {30^o}\). Do đó, \(\widehat {ADB} = \widehat {ACB}\) và \(\widehat {ADB} = \frac{1}{2}\widehat {AOB}\). CH Video hướng dẫn giải Trả lời câu hỏi Câu hỏi trang 70 SGK Toán 9 Kết nối tri thức Hãy cho biết số đo góc nội tiếp tìm được trong Hình 9.3 ở Ví dụ 1, biết rằng số đo của các cung màu xanh trong hình đều bằng \({120^o}\). Phương pháp giải: Vì B là góc nội tiếp trong đường tròn nên có số đo bằng nửa số đo cung bị chắn, từ đó tính được góc B. Lời giải chi tiết: Vì B là góc nội tiếp trong đường tròn nên \(\widehat B = \frac{1}{2}{.120^o} = {60^o}\). LT Video hướng dẫn giải Trả lời câu hỏi Luyện tập trang 70 SGK Toán 9 Kết nối tri thức Cho đường tròn tâm O và hai dây cung AB, CD cắt nhau tại điểm X nằm trong đường tròn (H.9.6). Chứng minh rằng $\Delta AXC\backsim \Delta DXB$. Phương pháp giải: + Sử dụng định lí về mối quan hệ giữa góc nội tiếp và cung bị chắn để chứng minh \(\widehat {ACX} = \widehat {XBD}\). + Chứng minh $\Delta AXC\backsim \Delta DXB$ theo trường hợp góc – góc. Lời giải chi tiết: Vì góc ACX và góc XBD là góc nội tiếp cùng chắn cung AD của đường tròn tâm O nên: \(\widehat {ACX} = \widehat {XBD}\). Tam giác AXC và tam giác DXB có: \(\widehat {ACX} = \widehat {XBD}\) (cmt), \(\widehat {AXC} = \widehat {BXD}\) (hai góc đối đỉnh). Do đó, $\Delta AXC\backsim \Delta DXB$ (g – g). VD Video hướng dẫn giải Trả lời câu hỏi Vận dụng trang 70 SGK Toán 9 Kết nối tri thức Trở lại tình huống mở đầu, hãy tính số đo của góc BAC nếu đường tròn có bán kính 2cm và dây cung \(BC = 2\sqrt 2 cm\). Chúng ta đã biết số đo góc ở tâm BOC của đường tròn (O) trong Hình 9.1 bằng số đo của cung bị chắn. Phương pháp giải: + Theo định lí Pythagore đảo chứng minh được tam giác BOC vuông tại O, tính được góc BOC. + Vì góc BOC và góc BAC lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung BC của đường tròn (O) nên \(\widehat {BAC} = \frac{1}{2}\widehat {BOC}\). Lời giải chi tiết: Vì B, C thuộc đường tròn (O) nên \(OB = OC = 2cm\). Xét tam giác BOC có: \(O{B^2} + O{C^2} = B{C^2}\left( {do\;{2^2} + {2^2} = {{\left( {2\sqrt 2 } \right)}^2}} \right)\) nên tam giác BOC vuông tại O (định lí Pythagore đảo). Suy ra, \(\widehat {BOC} = {90^o}\) Vì góc BOC và góc BAC lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung BC của đường tròn (O) nên \(\widehat {BAC} = \frac{1}{2}\widehat {BOC} = \frac{1}{2}{.90^o} = {45^o}\).
|