Giải bài tập 8 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạo

Cho phương trình ({x^2} + 7x - 15 = 0). Gọi ({x_1};{x_2}) là hai nghiệm của phương trình. Khi đó giá trị của biểu thức ({x_1}^2 + {x_2}^2 - {x_1}{x_2})là A. 79 B. 94 C. -94 D. -79

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho phương trình \({x^2} + 7x - 15 = 0\). Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình. Khi đó giá trị của biểu thức \({x_1}^2 + {x_2}^2 - {x_1}{x_2}\)là

A. 79

B. 94

C. -94

D. -79

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào: Nếu phương trình bậc hai \(a{x^2} + bx + c = 0(a \ne 0)\)có hai nghiệm \({x_1},{x_2}\) thì tổng và tích của hai nghiệm đó là:

S = \({x_1} + {x_2} =  - \frac{b}{a}\); P = \({x_1}.{x_2} = \frac{c}{a}\)

Lời giải chi tiết

Phương trình \({x^2} + 7x - 15 = 0\) có \(\Delta  = {7^2} - 4.( - 15) = 109 > 0\) nên nó có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo định lí Viète, ta có:

\({x_1} + {x_2} =  - \frac{b}{a} =  - 7\);\({x_1}.{x_2} = \frac{c}{a} =  - 15\)

Ta có \({\left( {{x_1} + {x_2}} \right)^2} = {x_1}^2 + 2{x_1}{x_2} + {x_2}^2\)

Suy ra \({x_1}^2 + {x_2}^2 - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2} = {( - 7)^2} - 3.( - 15) = 94\)

Chọn đáp án B.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close