Giải bài tập 11 trang 22 SGK Toán 9 tập 2 - Chân trời sáng tạoGiải các phương trình: a) ({x^2} - 12x = 0) b) (13{x^2} + 25x - 38 = 0) c) (3{x^2} - 4sqrt 3 x + 4 = 0) d) (x(x + 3) = 27 - (11 - 3x)) Đề bài Giải các phương trình: a) \({x^2} - 12x = 0\) b) \(13{x^2} + 25x - 38 = 0\) c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\) d) \(x(x + 3) = 27 - (11 - 3x)\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng phương pháp đặt nhân tử chung, hằng đẳng thức và quy tắc chuyển vế để đưa về dạng phương trình tích. Dựa vào: Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a + b + c = 0 thì phương trình có một nghiệm là \({x_1} = 1\) , nghiệm còn lại là \({x_2} = \frac{c}{a}\). Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)có a - b + c = 0 thì phương trình có một nghiệm là \({x_1} = - 1\) , nghiệm còn lại là \({x_2} = - \frac{c}{a}\). Dựa vào công thức nghiệm của phương trình bậc hai: Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\). + Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\); + Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\); + Nếu \(\Delta \) < 0 thì phương trình vô nghiệm. Lời giải chi tiết a) \({x^2} - 12x = 0\) x(x - 12) = 0 x = 0 hoặc x - 12 = 0 x = 0 hoặc x = 12 Vậy phương trình có 2 nghiệm là x = 0 và x = 12. b) \(13{x^2} + 25x - 38 = 0\) Phương trình \(13{x^2} + 25x - 38 = 0\) có a + b + c = 13 + 25 – 38 = 0. Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} = - \frac{{38}}{{13}}\) c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\) Ta có \(\Delta = {\left( { - 4\sqrt 3 } \right)^2} - 4.3.4 = 0\) Vậy phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{4\sqrt 3 }}{{2.3}} = \frac{{2\sqrt 3 }}{3}\). d) \(x(x + 3) = 27 - (11 - 3x)\) \(\begin{array}{l}{x^2} + 3x = 27 - 11 + 3x\\{x^2} = 16\\x = \pm 4\end{array}\) Vậy phương trình có 2 nghiệm là x = \( \pm 4\).
|