Giải bài tập 5.48 trang 86 SGK Toán 12 tập 2 - Cùng khám phá

Cho điểm M(3; −1; −2) và mặt phẳng \((\alpha )\): 3x − y + 2z + 4 = 0. Mặt phẳng đi qua M và song song với \((\alpha )\)có phương trình là A. \(3x + y - 2z - 14 = 0\) B. \(3x - y + 2z + 6 = 0\) C. \(3x - y + 2z - 6 = 0\) D. \(3x - y - 2z + 6 = 0\)

Đề bài

Cho điểm M(3; −1; −2) và mặt phẳng \((\alpha )\): 3x − y + 2z + 4 = 0. Mặt phẳng đi qua M và song song với \((\alpha )\)có phương trình là

A. \(3x + y - 2z - 14 = 0\)

B. \(3x - y + 2z + 6 = 0\)

C. \(3x - y + 2z - 6 = 0\)

D. \(3x - y - 2z + 6 = 0\)

Phương pháp giải - Xem chi tiết

- Mặt phẳng song song với mặt phẳng \(\alpha \) phải có cùng vectơ pháp tuyến.

- Phương trình mặt phẳng có dạng:

\({n_1}(x - {x_1}) + {n_2}(y - {y_1}) + {n_3}(z - {z_1}) = 0\)

Lời giải chi tiết

Phương trình mặt phẳng đi qua điểm \(M(3; - 1; - 2)\) và song song với mặt phẳng \(\alpha :3x - y + 2z + 4 = 0\) có cùng vectơ pháp tuyến \(\vec n = (3, - 1,2)\).

Ta thay tọa độ điểm \(M(3, - 1, - 2)\) vào phương trình sau:

\(3(x - 3) - (y + 1) + 2(z + 2) = 0\)

\(3x - 9 - y - 1 + 2z + 4 = 0\)

\(3x - y + 2z - 6 = 0\)

Do đó, phương trình mặt phẳng cần tìm là:

\(3x - y + 2z - 6 = 0\)

Chọn C

  • Giải bài tập 5.49 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

    Cho mặt phẳng ((alpha )): 2x + y − 3z + 8 = 0. Mặt phẳng nào sau đây vuông góc với mặt phẳng ((alpha ))? A. x – 3y + 3z – 7 = 0 B. 3x – 3y + z – 7 = 0 C. x + 2y – z – 8 = 0 D. x – 2y + z + 8 = 0

  • Giải bài tập 5.50 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

    Cho đường thẳng \(\Delta \) đi qua điểm \(M(2;0; - 1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). Phương trình tham số của đường thẳng \(\Delta \) là: \({\rm{A}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{B}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3}\\{z = - 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{C}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 +

  • Giải bài tập 5.51 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

    Cho hai điểm \(A(1; - 2; - 3)\), \(B( - 1;4;1)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình đường thẳng đi qua trung điểm của đoạn thẳng AB và song song với \(d\)? \({\rm{A}}{\rm{. }}d':\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\) \({\rm{B}}{\rm{. }}d':\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\) \({\rm{C}}{\rm{. }}d':\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

  • Giải bài tập 5.52 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

    Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là: A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\) C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) D. \(\left\{ {\begin{array}{*{

  • Giải bài tập 5.53 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

    Cho hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = 2 + 3t}\\{z = 3 + 4t\quad (t \in \mathbb{R})}\end{array}} \right.\) và \({d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 4t'}\\{y = 5 + 6t'}\\{z = 7 + 8t'\quad (t' \in \mathbb{R})}\end{array}} \right.\). Trong các mệnh đề sau, mệnh đề nào đúng? A. \({d_1}\) và \({d_2}\) cắt nhau. B. \({d_1}\parallel {d_2}\). C. \({d_1} \equiv {d_2}\). D. \({d_1}\) và \({d_2}\) chéo nhau.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close