Giải bài tập 5.50 trang 87 SGK Toán 12 tập 2 - Cùng khám pháCho đường thẳng \(\Delta \) đi qua điểm \(M(2;0; - 1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). Phương trình tham số của đường thẳng \(\Delta \) là: \({\rm{A}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{B}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3}\\{z = - 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{C}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + Đề bài Cho đường thẳng \(\Delta \) đi qua điểm \(M(2;0; - 1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). Phương trình tham số của đường thẳng \(\Delta \) là: \({\rm{A}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{B}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3}\\{z = - 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{C}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3t}\\{z = - 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{D}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3t}\\{z = 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) Phương pháp giải - Xem chi tiết Phương trình tham số của đường thẳng \(\Delta \) đi qua điểm \(M({x_0},{y_0},{z_0})\) và có vectơ chỉ phương \(\vec a = (a,b,c)\) có dạng: \(\left\{ {\begin{array}{*{20}{l}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\quad t \in \mathbb{R}.\) Lời giải chi tiết - Đường thẳng \(\Delta \) đi qua điểm \(M(2;0; - 1)\) nên ta có \({x_0} = 2\), \({y_0} = 0\), \({z_0} = - 1\). - Vector chỉ phương của đường thẳng là \(\vec a = (2; - 3;1)\), do đó \(a = 2\), \(b = - 3\), \(c = 1\). - Thay các giá trị vào phương trình tham số của đường thẳng: \(\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = 0 - 3t = - 3t}\\{z = - 1 + 1 \cdot t = - 1 + t}\end{array}} \right.\) - Vậy phương trình tham số của đường thẳng \(\Delta \) là: \(\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3t}\\{z = - 1 + t}\end{array}} \right.\) Chọn C
|