Giải bài tập 5.36 trang 84 SGK Toán 12 tập 2 - Cùng khám phá

Viết phương trình tham số của đường thẳng a) Đi qua hai điểm (A(1;0; - 3)) và (B( - 3;1;0)). b) Đi qua điểm (M(2;3; - 5)) và song song với đường thẳng (Delta ): (left{ {begin{array}{*{20}{l}}{x = - 2 + 2t}{y = 3 - 4t}{z = - 5tquad (t in mathbb{R})}end{array}} right.)

Đề bài

Viết phương trình tham số của đường thẳng

a) Đi qua hai điểm \(A(1;0; - 3)\) và \(B( - 3;1;0)\).

b) Đi qua điểm \(M(2;3; - 5)\) và song song với đường thẳng \(\Delta \): \(\left\{ {\begin{array}{*{20}{l}}{x =  - 2 + 2t}\\{y = 3 - 4t}\\{z =  - 5t\quad (t \in \mathbb{R})}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

a)

- Ta tìm vectơ chỉ phương của đường thẳng bằng cách lấy vectơ \(\overrightarrow {AB}  = B - A\).

- Phương trình tham số của đường thẳng đi qua điểm \(A({x_1},{y_1},{z_1})\) và có vectơ chỉ phương \(\vec u = (a,b,c)\) là:

\(\left\{ {\begin{array}{*{20}{l}}{x = {x_1} + at}\\{y = {y_1} + bt}\\{z = {z_1} + ct\quad (t \in \mathbb{R})}\end{array}} \right.\)

b)

- Ta xác định vectơ chỉ phương của \(\Delta \) bằng hệ số của tham số t trong phương trình của \(\Delta \).

- Phương trình tham số của đường thẳng qua điểm \(M({x_0},{y_0},{z_0})\) và song song với vectơ chỉ phương \(\vec u = (a,b,c)\) là:

\(\left\{ {\begin{array}{*{20}{l}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct\quad (t \in \mathbb{R})}\end{array}} \right.\)

Lời giải chi tiết

a)

Đường thẳng đi qua hai điểm \(A(1;0; - 3)\) và \(B( - 3;1;0)\).

- Tính vectơ chỉ phương \(\overrightarrow {AB} \):

\(\overrightarrow {AB}  = B - A = ( - 3 - 1,1 - 0,0 - ( - 3)) = ( - 4,1,3)\)

- Phương trình tham số của đường thẳng đi qua điểm \(A(1,0, - 3)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = ( - 4,1,3)\) là:

\(\left\{ {\begin{array}{*{20}{l}}{x = 1 - 4t}\\{y = 0 + t}\\{z =  - 3 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\)

b)

Đường thẳng đi qua điểm \(M(2;3; - 5)\) và song song với đường thẳng \(\Delta \):

\(\left\{ {\begin{array}{*{20}{l}}{x =  - 2 + 2t}\\{y = 3 - 4t}\\{z =  - 5t\quad (t \in \mathbb{R})}\end{array}} \right.\)

- Vector chỉ phương của đường thẳng \(\Delta \) là \(\vec u = (2, - 4, - 5)\)

- Phương trình tham số của đường thẳng đi qua điểm \(M(2,3, - 5)\) và có vectơ chỉ phương \(\vec u = (2, - 4, - 5)\) là:

\(\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = 3 - 4t}\\{z =  - 5 - 5t\quad (t \in \mathbb{R})}\end{array}} \right.\)

  • Giải bài tập 5.37 trang 84 SGK Toán 12 tập 2 - Cùng khám phá

    Cho mặt phẳng (\(\alpha \)): 2x − y + 2z + 11 = 0 và điểm M(1; −1; 2). a) Viết phương trình mặt phẳng (\(\beta \)) chứa điểm M và song song với (\(\alpha \)). b) Tính khoảng cách từ điểm M đến mặt phẳng (\(\alpha \)).

  • Giải bài tập 5.38 trang 84 SGK Toán 12 tập 2 - Cùng khám phá

    Cho mặt cầu (S) có đường kính là AB, biết rằng A(6; 2; −5), B(−4; 0; 7). a) Tìm toạ độ tâm I và tính bán kính r của mặt cầu (S). b) Viết phương trình của mặt cầu (S).

  • Giải bài tập 5.39 trang 84 SGK Toán 12 tập 2 - Cùng khám phá

    Người ta mô phỏng thiết kế của một bình chứa nhiên liệu có dạng một hình chóp cụt tứ giác đều trong hệ trục Oxyz như Hình 5.39 với (S(0;0;0)), (P(10;0;0)), (Q(10;10;0)), (R(8;8;12)), (T(2;2;12)). a) Viết phương trình các mặt phẳng chứa các mặt bên của bình. b) Tính (sin ) của góc giữa cạnh bên và mặt đáy. c) Tính (cos ) của góc giữa các mặt bên.

  • Giải bài tập 5.40 trang 85 SGK Toán 12 tập 2 - Cùng khám phá

    Trong các chương trình đồ hoạ máy tính, để tạo ảo giác theo đúng phối cảnh, các vật ở càng gần thì càng lớn hơn các vật ở xa, các hình ảnh ba chiều trong bộ nhớ của máy tính được chiếu lên một màn hình hình chữ nhật từ điểm nhìn của mắt hoặc máy chiếu.

  • Giải bài tập 5.41 trang 85 SGK Toán 12 tập 2 - Cùng khám phá

    Một sân hình chữ nhật ABCD có chiều dài AD = 20 m, chiều rộng AB = 15 m. Người ta đặt một camera ở độ cao 5 m trên một cây cột vuông góc với mặt sân tại A, biết camera có bán kính quan sát là 25 m. Xét hệ trục toạ độ Oxyz với gốc toạ độ O trùng với điểm A chân cột, các tia Ox, Oy lần lượt chứa các cạnh AB, AD của sân và tia Oz chứa cây cột.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close