Giải bài tập 4.8 trang 78 SGK Toán 9 tập 1 - Kết nối tri thức

Giải tam giác ABC vuông tại A có (BC = a,AC = b,AB = c,) trong các trường hợp (góc làm tròn đến độ, độ dài cạnh làm tròn đến chữ số hàng đơn vị): a) (a = 21,b = 18;) b) (b = 10,widehat C = {30^0};) c) (c = 5,b = 3.)

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Giải tam giác ABC vuông tại A có \(BC = a,AC = b,AB = c,\) trong các trường hợp (góc làm tròn đến độ, độ dài cạnh làm tròn đến chữ số hàng đơn vị):

a) \(a = 21,b = 18;\)

b) \(b = 10,\widehat C = {30^0};\)

c) \(c = 5,b = 3.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào tỉ số lượng giác giữa các cạnh ta tính được góc B hoặc góc C, và các biểu thức liên quan giữa cạnh và góc chưa biết kết hợp thêm định lý Pythagore để tính cạnh còn lại khi biết hai cạnh.

Lời giải chi tiết

a) \(a = 21,b = 18;\)

Tam giác ABC vuông tại A, ta có: \(A{B^2} + A{C^2} = B{C^2}\) (định lý Pythagore)

Thay số ta có: \(A{B^2} + {18^2} = {21^2}\) hay \(AB = \sqrt {{{21}^2} - {{18}^2}}  = 3\sqrt {13} \approx 11\) (vì \(AB > 0\))

Ta có \(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{{18}}{{21}} = \frac{6}{7}\) nên \(\widehat B \approx {59^0}\)

Mà \(\widehat B + \widehat C = {90^0}\) nên \(\widehat C = {90^0} - \widehat B \approx {90^0} - {59^0} = {31^0}\)

b) \(b = 10,\widehat C = {30^0};\)

Tam giác ABC vuông tại A, ta có \(\tan \widehat C = \frac{{AB}}{{AC}}\) hay \(\tan {30^0} = \frac{{AB}}{{10}}\) suy ra \(AB = 10.{{\tan {{30}^0}}} = \frac{10\sqrt 3}{3} \approx 6 \)

\(\cos \widehat C = \frac{{AC}}{{BC}}\) hay \(\cos{30^0} = \frac{{10}}{{BC}}\) suy ra \(BC = \frac{{10}}{{\cos {{30}^0}}} = \frac{{20\sqrt 3}}{{3}} \approx 12\)

Mà \(\widehat B + \widehat C = {90^0}\) nên \(\widehat B = {90^0} - \widehat C = {90^0} - {30^0} = {60^0}\)

c) \(c = 5,b = 3.\)

Tam giác ABC vuông tại A, ta có: \(A{B^2} + A{C^2} = B{C^2}\) (định lý Pythagore)

Thay số ta có: \(B{C^2} = {5^2} + {3^2} = 34\) hay \(BC = \sqrt {34} \approx 6\) (vì \(BC > 0\))

Ta có \(\tan \widehat B = \frac{{AC}}{{AB}} = \frac{3}{5}\) nên \(\widehat B \approx {31^0}\)

Mà \(\widehat B + \widehat C = {90^0}\) nên \(\widehat C = {90^0} - \widehat B \approx {90^0} - {31^0} = {59^0}\)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close