Giải bài tập 4.4 trang 82 SGK Toán 9 tập 1 - Cùng khám pháKhi một vật được ném xiên một góc \(\alpha \) so với mặt đất và tốc độ ném ban đầu là \({v_o}\left( {m/s} \right)\) (Hình 4.14), độ cao lớn nhất H(m) mà vật có thể đạt đến được cho bởi công thức: \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) (nguồn: https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/3%3A_Two-Dimensional_Kinematics/3.3%3A_Projectile_Motion). Tính độ cao lớn nhất của vật nếu tốc độ ném ban đầu là 12m/s và góc ném là: a) \({45^o}\); b Đề bài Khi một vật được ném xiên một góc \(\alpha \) so với mặt đất và tốc độ ném ban đầu là \({v_o}\left( {m/s} \right)\) (Hình 4.14), độ cao lớn nhất H(m) mà vật có thể đạt đến được cho bởi công thức: \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) (nguồn: https://phys.libretexts.org/Bookshelves/University_Physics/Physics_(Boundless)/3%3A_Two-Dimensional_Kinematics/3.3%3A_Projectile_Motion). Tính độ cao lớn nhất của vật nếu tốc độ ném ban đầu là 12m/s và góc ném là: a) \({45^o}\); b) \({30^o}\); c) \({50^o}\). Làm tròn kết quả đến hàng phần mười mét. Phương pháp giải - Xem chi tiết a) Thay \({v_o} = 12,\alpha = {45^o}\) vào công thức \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) để tính chiều cao H. b) Thay \({v_o} = 12,\alpha = {30^o}\) vào công thức \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) để tính chiều cao H. c) Thay \({v_o} = 12,\alpha = {50^o}\) vào công thức \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) để tính chiều cao H. Lời giải chi tiết a) Thay \({v_o} = 12,\alpha = {45^o}\) vào công thức \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) ta có: \(H = \frac{1}{{20}}{.12^2}{\left( {\sin {{45}^o}} \right)^2} = \frac{{18}}{5}\left( m \right)\). b) Thay \({v_o} = 12,\alpha = {30^o}\) vào công thức \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) ta có: \(H = \frac{1}{{20}}{.12^2}{\left( {\sin {{30}^o}} \right)^2} = \frac{9}{5}\left( m \right)\). c) Thay \({v_o} = 12,\alpha = {50^o}\) vào công thức \(H = \frac{1}{{20}}v_o^2{\left( {\sin \alpha } \right)^2}\) ta có: \(H = \frac{1}{{20}}{.12^2}{\left( {\sin {{50}^o}} \right)^2} \approx 4,2\left( m \right)\).
|