Giải bài tập 4.36 trang 37 SGK Toán 12 tập 2 - Cùng khám pháHọ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là: A. \(2{x^2} - \frac{1}{x} + C\) B. \(2{x^2} + \frac{1}{x} + C\) C. \(4 - \frac{2}{{{x^3}}} + C\) D. \(4 + \frac{2}{{{x^3}}} + C\) Đề bài Họ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là: A. \(2{x^2} - \frac{1}{x} + C\) B. \(2{x^2} + \frac{1}{x} + C\) C. \(4 - \frac{2}{{{x^3}}} + C\) D. \(4 + \frac{2}{{{x^3}}} + C\) Phương pháp giải - Xem chi tiết - Phân tích biểu thức \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) thành tổng của các hàm phân số đơn giản hơn. - Tìm nguyên hàm của các thành phần sau khi phân tích. Lời giải chi tiết Phân tích hàm số: \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}} = \frac{{4{x^3}}}{{{x^2}}} + \frac{1}{{{x^2}}} = 4x + \frac{1}{{{x^2}}}\) Tìm nguyên hàm: \(F(x) = \int {\left( {4x + \frac{1}{{{x^2}}}} \right)} dx = 2{x^2} - \frac{1}{x} + C\) Chọn A.
|