Giải bài tập 4 trang 26 SGK Toán 12 tập 2 - Cánh diều

Cho \(\int\limits_{ - 2}^3 {f(x)dx} = - 10\), \(F(x)\) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)

Đề bài

Cho \(\int\limits_{ - 2}^3 {f(x)dx}  =  - 10\), \(F(x)\) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)

Phương pháp giải - Xem chi tiết

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là nguyên hàm của f(x) trên đoạn [a;b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)} dx\)

Lời giải chi tiết

\(\int\limits_{ - 2}^3 {f(x)dx}  = \left. {F(x)} \right|_{ - 2}^3 = F(3) - F( - 2) =  - 10 \Leftrightarrow F( - 2) = 2\)

  • Giải bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều

    a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi \(t \in [a;b]\). Hãy giải thích vì sao \(\int\limits_a^b {v(t)dt} \) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây) b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm \(t = \frac{{3\pi }}{4}\) (s)

  • Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Một vật chuyển động với vận tốc được cho bởi đồ thị ở Hình 9. a) Tính quãng đường mà vật di chuyển được trong 1 giây đầu tiên b) Tính quãng đường mà vật di chuyển được trong 2 giây đầu tiên

  • Giải bài tập 9 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Ở nhiệt độ \(37^\circ C\), một phản ứng hóa học từ chất đầu A, chuyển hóa thành sản phẩm B theo phương trình: \(A \to B\). Giả sử y(x) là nồng độ chất A (đơn vị mol \({L^{ - 1}}\)) tại thời gian x (giây), y(x) > 0 với \(x \ge 0\), thỏa mãn hệ thức \(y'(x) = - {7.10^{ - 4}}y(x)\) với \(x \ge 0\). Biết rằng tại x = 0, nồng độ (đầu) của A là 0,05 mol \({L^{ - 1}}\). a) Xét hàm số \(f(x) = \ln y(x)\) với \(x \ge 0\). Hãy tính f’(x), từ đó hãy tìm hàm số f(x) b) Giả sử tính nồng độ trung bình chất

  • Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Tính: a) (intlimits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} ) b) (intlimits_1^2 {frac{1}{{{x^4}}}dx} ) c) (intlimits_1^4 {frac{1}{{xsqrt x }}dx} ) d) (intlimits_0^{frac{pi }{2}} {(4sin x + 3cos x)dx} ) e) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {{{cot }^2}xdx} ) g) (intlimits_0^{frac{pi }{4}} {{{tan }^2}xdx} ) h) (intlimits_{ - 1}^0 {{e^{ - x}}dx} ) i) (intlimits_{ - 2}^{ - 1} {{e^{x + 2}}dx} ) k) (intlimits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx}

  • Giải bài tập 5 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Cho (intlimits_0^4 {f(x)dx} = 4,intlimits_3^4 {f(x)dx} = 6). Tính (intlimits_0^3 {f(x)dx} )

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close