Giải bài tập 2.24 trang 82 SGK Toán 12 tập 1 - Cùng khám phá

Trong không gian Oxyz, cho ba điểm A(1; 2; 3), B(2; -2; 1), C(-1; -2; -3). a) Chứng tỏ ba điểm A, B, C tạo thành một tam giác. b) Tìm tọa độ trọng tâm G của tam giác ABC. c) Xác định điểm D sao cho ABCD là hình bình hành. Tìm tọa độ tâm I và chu vi của hình bình hành này.

Đề bài

Trong không gian Oxyz, cho ba điểm A(1; 2; 3), B(2; -2; 1), C(-1; -2; -3).

a) Chứng tỏ ba điểm A, B, C tạo thành một tam giác.

b) Tìm tọa độ trọng tâm G của tam giác ABC.

c) Xác định điểm D sao cho ABCD là hình bình hành. Tìm tọa độ tâm I và chu vi của hình bình hành này.

Phương pháp giải - Xem chi tiết

a) Để chứng minh ba điểm A, B, C tạo thành một tam giác, ta kiểm tra xem ba điểm này có thẳng hàng hay không. Tính các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \), sau đó tính tích vô hướng \(\overrightarrow {AB}  \cdot \overrightarrow {AC} \). Nếu tích vô hướng bằng tích độ dài của hai vectơ, tức là , thì ba điểm thẳng hàng; ngược lại, chúng tạo thành một tam giác.

b) Trọng tâm G của tam giác ABC được xác định bằng công thức:

\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\)

c) Điểm D được xác định bằng cách sử dụng tính chất của hình bình hành: \(\overrightarrow {AB}  = \overrightarrow {CD} .\) Tọa độ của tâm I của hình bình hành ABCD là trung điểm của hai đường chéo, và chu vi hình bình hành là 2(AB + BC).

Lời giải chi tiết

a) Tính các vectơ:

\(\overrightarrow {AB}  = (1; - 4; - 2), \overrightarrow {AC}  = ( - 2; - 4; - 6)\)

Tích vô hướng:

\(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 1( - 2) + ( - 4)( - 4) + ( - 2)( - 6) =  - 2 + 16 + 12 = 26\).

Độ dài của các vectơ:

\(\left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {{( - 4)}^2} + {{( - 2)}^2}}  = \sqrt {21}, \left| {\overrightarrow {AC} } \right| = \sqrt {{{( - 2)}^2} + {{( - 4)}^2} + {{( - 6)}^2}}  = \sqrt {56} \)

So sánh:

\(\left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {AC} } \right| \approx \sqrt {21}  \times \sqrt {56}  = \sqrt {1176}  \ne 26\)

Do đó, ba điểm A, B, C không thẳng hàng và tạo thành một tam giác.

b) Tọa độ trọng tâm \(G\):

\(G\left( {\frac{{1 + 2 - 1}}{3};\frac{{2 - 2 - 2}}{3};\frac{{3 + 1 - 3}}{3}} \right) = G\left( {\frac{2}{3}; - \frac{2}{3};\frac{1}{3}} \right)\)

c) Điểm D thỏa mãn \(\overrightarrow {AB}  = \overrightarrow {DC} \), tức là \(\vec C - \vec D = \vec B - \vec A\), nên tọa độ D sẽ là:

\(D = (A - B) + C = (1 - 2;2 - ( - 2);3 - ( - 3)) + ( - 1; - 2; - 3) = ( - 2;2;3)\)

Tọa độ tâm I của hình bình hành ABCD :

\(I = \frac{{A + C}}{2} = \frac{{(1;2;3) + ( - 1; - 2; - 3)}}{2} = (0;0;0)\)

Chu vi hình bình hành ABCD :

\(AB = \sqrt {{{(2 - 1)}^2} + {{( - 2 - 2)}^2} + {{(1 - 3)}^2}}  = \sqrt {1 + 16 + 4}  = \sqrt {21} \)

\(BC = \sqrt {{{( - 1 - 2)}^2} + {{( - 2 - ( - 2))}^2} + {{( - 3 - 1)}^2}}  = \sqrt {9 + 0 + 16}  = \sqrt {25}  = 5\)

\(P = 2 \times (\sqrt {21}  + 5)\)

  • Giải bài tập 2.25 trang 82 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có đỉnh A trùng với gốc tọa độ O, các đỉnh B, D, A’ tương ứng thuộc các tia Ox, Oy, Oz và AB = 1, AD = 2, AA’ = 3. a) Tìm tọa độ các đỉnh của hình hộp. b) Tìm điểm E trên đường thẳng DD’ sao cho \(B'E \bot A'C'\).

  • Giải bài tập 2.26 trang 82 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(2; -1; 1). Tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).

  • Giải bài tập 2.27 trang 82 SGK Toán 12 tập 1 - Cùng khám phá

    a) Trong không gian Oxyz, cho hình lập phương OABC.O’A’B’C’ với O(0;0;1), A(1;0;0), C(0;1;0) (Hình 2.45). G là trung điểm của đường chéo OB’ của hình lập phương. - Chứng minh rằng ACO’B’ là một tứ diện đều. - Tìm toạ độ các điểm B’ và G. Chứng minh rằng (overrightarrow {GA} + overrightarrow {GC} + overrightarrow {GO'} + overrightarrow {GB'} = vec 0). Điểm G được gọi là trọng tâm của tứ diện đều ACO’B’.

  • Giải bài tập 2.28 trang 83 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, lực không đổi \(\vec F = 3\vec i + 5\vec j + 10\vec k\) làm di chuyển một vật dọc theo đoạn thẳng từ \(M(1;0;2)\) đến \(N(5;3;8)\). Tìm công sinh ra nếu khoảng cách được tính bằng mét và lực được tính bằng newton.

  • Giải bài tập 2.29 trang 83 SGK Toán 12 tập 1 - Cùng khám phá

    Trong không gian Oxyz, một máy bay đang bay ở vị trí A(250;465;15) với tốc độ \(\vec v = (455;620;220)\) thì vào một vùng có gió với tốc độ \(\vec u = (37; - 12;4)\) (đơn vị tốc độ là km/giờ. Máy bay bay vùng gió này mất 30 phút. Tìm vị trí của máy bay sau 30 phút đó.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close