Giải bài tập 2 trang 78 SGK Toán 12 tập 2 - Cánh diều

Đường thẳng đi qua điểm \(B\left( { - 1;3;6} \right)\) nhận \(\overrightarrow u = \left( {2; - 3;8} \right)\) làm vectơ chỉ phương có phương trình chính tắc là:

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Đường thẳng đi qua điểm \(B\left( { - 1;3;6} \right)\) nhận \(\overrightarrow u  = \left( {2; - 3;8} \right)\) làm vectơ chỉ phương có phương trình chính tắc là:

A. \(\frac{{x - 1}}{2} = \frac{{y + 3}}{{ - 3}} = \frac{{z + 6}}{8}\).

B. \(\frac{{x + 1}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8}\).

C. \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 3}}{3} = \frac{{z - 6}}{8}\).

D. \(\frac{{x + 1}}{2} = \frac{{y - 3}}{3} = \frac{{z - 6}}{8}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phương trình chính tắc của đường thẳng để viết phương trình chính tắc của đường thẳng: Nếu \(abc \ne 0\) thì hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\).

Lời giải chi tiết

Vì đường thẳng đi qua điểm \(B\left( { - 1;3;6} \right)\) nhận \(\overrightarrow u  = \left( {2; - 3;8} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - \left( { - 1} \right)}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8} \Leftrightarrow \frac{{x + 1}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8}\).

Chọn B

  • Giải bài tập 3 trang 78 SGK Toán 12 tập 2 - Cánh diều

    Mặt phẳng \(\left( P \right):x - 2 = 0\) vuông góc với mặt phẳng nào sau đây? A. \(\left( {{P_1}} \right):x + 2 = 0\). B. \(\left( {{P_2}} \right):x + y - 2 = 0\). C. \(\left( {{P_3}} \right):z - 2 = 0\). D. \(\left( {{P_4}} \right):x + z - 2 = 0\).

  • Giải bài tập 4 trang 78 SGK Toán 12 tập 2 - Cánh diều

    Cho đường thẳng \(\Delta \) có phương trình tham số \(\left\{ \begin{array}{l}x = 1 - t\\y = 3 + 2t\\z = - 1 + 3t\end{array} \right.\)(t là tham số). a) Chỉ ra tọa độ hai điểm thuộc đường thẳng \(\Delta \). b) Điểm nào trong các điểm \(C\left( {6; - 7; - 16} \right),D\left( { - 3;11; - 11} \right)\) thuộc đường thẳng \(\Delta \)?

  • Giải bài tập 5 trang 78, 79 SGK Toán 12 tập 2 - Cánh diều

    Viết phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau: a) \(\Delta \) đi qua điểm \(A\left( { - 1;3;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 2;3;4} \right)\). b) \(\Delta \) đi qua hai điểm \(M\left( {2; - 1;3} \right)\) và \(N\left( {3;0;4} \right)\).

  • Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều

    Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z - 3}}{{ - 1}}\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 11 - 6t\\y = - 6 - 3t\\z = 10 + 3t\end{array} \right.\) (t là tham số); b) \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 + 4t\\z = 3 + 5t\end{array} \right.\) (t là tham số) và \({\Delta _2}:\frac{{x + 3}}{1} = \frac{{y + 6}}{2} = \frac{{z - 15}}{{ - 3}}\)

  • Giải bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh diều

    Tính góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + {t_1}\\y = 4 + \sqrt 3 {t_1}\\z = 0\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 1 + \sqrt 3 {t_2}\\y = 4 + {t_2}\\z = 5\end{array} \right.\) (\({t_1},{t_2}\) là tham số); b) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + t\\z = 4 - t\end{array} \right.\) (t là tham số) và \({\Del

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close