Giải bài 9.5 trang 52 sách bài tập toán 8 - Kết nối tri thức với cuộc sốngCho $\Delta ABC\backsim \Delta MNP$. Biết \(AB = 5cm,MN = 8cm\) và chu vi tam giác ABC bằng 20cm. Đề bài Cho $\Delta ABC\backsim \Delta MNP$. Biết \(AB = 5cm,MN = 8cm\) và chu vi tam giác ABC bằng 20cm. Hỏi $\Delta ABC\backsim \Delta MNP$ với tỉ số đồng dạng bằng bao nhiêu và chu vi tam giác MNP bằng bao nhiêu? Phương pháp giải - Xem chi tiết Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ: + Tam giác A’B’C’ được gọi là đồng dạng với tam giác ABC nếu các cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau, tức là \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}};\widehat {A'} = \widehat A,\widehat {B'} = \widehat B,\widehat {C'} = \widehat C\), + Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A'B'C'\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = k\) được gọi là tỉ số đồng dạng. Lời giải chi tiết Vì $\Delta ABC\backsim \Delta MNP$ nên \(\frac{{BC}}{{NP}} = \frac{{AC}}{{MP}} = \frac{{AB}}{{MN}} = \frac{5}{8}\) Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{BC}}{{NP}} = \frac{{AC}}{{MP}} = \frac{{AB}}{{MN}} = \frac{{AB + BC + AC}}{{MN + MP + NP}} = \frac{5}{8}\) Chu vi tam giác ABC bằng 20cm nên \(AB + BC + AC = 20\) Do đó, \(MN + MP + NP = 20:\frac{5}{8} = 32\left( {cm} \right)\) Vậy $\Delta ABC\backsim \Delta MNP$ với tỉ số đồng dạng bằng \(\frac{5}{8}\) và chu vi tam giác MNP bằng 32cm.
|