Giải bài 9.7 trang 52 sách bài tập toán 8 - Kết nối tri thức với cuộc sốngCho tam giác không cân ABC đồng dạng với một tam giác có 3 đỉnh là M, N, P. Biết rằng \(\frac{{AB}}{{NP}} = \frac{{AC}}{{PM}} = \frac{{BC}}{{MN}}\), Đề bài Cho tam giác không cân ABC đồng dạng với một tam giác có 3 đỉnh là M, N, P. Biết rằng \(\frac{{AB}}{{NP}} = \frac{{AC}}{{PM}} = \frac{{BC}}{{MN}}\), hãy chỉ ra các đỉnh tương ứng và viết đúng kí hiệu đồng dạng của hai tam giác đó. Phương pháp giải - Xem chi tiết Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ: + Tam giác A’B’C’ được gọi là đồng dạng với tam giác ABC nếu các cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau, tức là \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}};\widehat {A'} = \widehat A,\widehat {B'} = \widehat B,\widehat {C'} = \widehat C\), + Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A'B'C'\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = k\) được gọi là tỉ số đồng dạng. Lời giải chi tiết Vì \(\frac{{AB}}{{NP}} = \frac{{AC}}{{PM}} = \frac{{BC}}{{MN}}\) nên cạnh AB tương ứng với cạnh NP, cạnh AC tương ứng với cạnh PM, cạnh BC tương ứng với cạnh MN. Do các đỉnh tương ứng sẽ đối diện với các cạnh tương ứng nên các cặp đỉnh tương ứng của hai tam giác đồng dạng đã cho là: C và M, B và N, A và P. Do đó, $\Delta ABC\backsim \Delta PNM$
|